[1] Shiekh, K. A., Benjakul, S., & Gulzar, S. (2021). Impact of pulsed electric field and vacuum impregnation with Chamuang leaf extract on quality changes in Pacific white shrimp packaged under modified atmosphere.
LWT, 149, 111899. DOI:
10.1016/j.lwt.2021.111899
[2] Mittal, A., Singh, A., Aluko, R. E., & Benjakul, S. (2021). Pacific white shrimp (
Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities.
J. Food Biochem, 45(1), e13569. 226. DOI:
10.1111/jfbc.13569
[3] Cabanillas-Bojórquez, L. A., Gutiérrez-Grijalva, E. P., Castillo-López, R. I., Contreras-Angulo, L. A., Angulo-Escalante, M. A., López-Martínez, L. X., Ríos-Iribe, E. Y., & Heredia, J. B. (2021). Bioprocessing of shrimp waste using novel industrial by-products: Effects on nutrients and lipophilic antioxidants.
Ferment, 7(4), 312. DOI:
10.3390/fermentation7040312
[4] Gulzar, S., Raju, N., Nagarajarao, R. C., & Benjakul, S. (2020). Oil and pigments from shrimp processing by-products: Extraction, composition, bioactivities and its application-A review.
Trends Food Sci Technol, 100, 307-319. DOI:
10.1016/j.tifs.2020.04.005
[5] Subramanian, B., Thibault, M. H., Djaoued, Y., Pelletier, C., Touaibia, M., & Tchoukanova, N. (2015). Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to “Astaxanthin-rich shrimp oil” obtained from processing of Nordic shrimps.
Analyst, 140(21), 7423-7433. DOI:
10.1039/c5an01261a
[6] Miniadis-Meimaroglou, S., & Sinanoglou, V.J. (2013). Lipid profile and nutritional evaluation of shrimps. AFSci, 661(2), 21-40.
[7] Raju, N., Gulzar, S., Buamard, N., Ma, L., Ying, X., Zhang, B., & Benjakul, S. (2021). Comparative study of astaxanthin, cholesterol, fatty acid profiles, and quality indices between shrimp oil extracted from hepatopancreas and cephalothorax.
Front. Nutr, 8, 803664. DOI:
10.3389/fnut.2021.803664
[8] Gómez-Estaca, J., Calvo, M. M., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Characterization and storage stability of astaxanthin esters, fatty acid profile and α-tocopherol of lipid extract from shrimp (
L.
vannamei) waste with potential applications as food ingredient.
Food Chem, 216, 37-44. DOI:
10.1016/j.foodchem.2016.08.016
[9] Wu, H., Niu, H., Shao, A., Wu, C., Dixon, B. J., Zhang, J., ... & Wang, Y. (2015). Astaxanthin as a potential neuroprotective agent for neurological diseases.
Mar. Drugs, 13(9), 5750-5766. DOI:
10.3390/md13095750
[11] Raju, N., Sae-leaw, T., Osako, K., & Benjakul, S. (2022). Improved cholesterol depletion with enhanced astaxanthin and polyunsaturated fatty acids of lipid from Pacific white shrimp cephalothorax using prior ethanolic separation of polar lipid and β-Cyclodextrin.
JFST,
59(6), 2255–2262. DOI:
10.1007/s13197-021-05238-7
[12] Aref, M., Movahedi, A., Heidari-Beni, M., & Kelishadi, R. (2023). Effects of shrimp oil on cardio-metabolic risk factors in children and adolescents.
IJVNR, 93 (6), 490-497. DOI:
10.1024/0300-9831/a000755
[13] Ei, Z. Z., Benjakul, S., Buamard, N., Visuttijai, K., & Chanvorachote, P. (2022). Shrimp lipid prevents endoplasmic reticulum-mediated endothelial cell damage.
Foods, 11(19), 3076. DOI:
10.3390/foods11193076
[14] Sharayei, P., Azarpazhooh, E., Zomorodi, S., Einafshar, S., & Ramaswamy, H. S. (2021). Optimization of ultrasonic-assisted extraction of astaxanthin from green tiger (
Penaeus semisulcatus) shrimp shell.
Ultrason. Sonochem, 76, 105666. DOI:
10.1016/j.ultsonch.2021.105666
[15] Rodrigues, L. A., Pereira, C. V., Leonardo, I. C., Fernández, N., Gaspar, F. B., Silva, J. M., ... & Matias, A. A. (2020). Terpene-based natural deep eutectic systems as efficient solvents to recover astaxanthin from brown crab shell residues.
ACS Sustain. Chem. Eng, 8(5), 2246-2259. DOI:
10.1021/acssuschemeng.9b06283
[16] Roy, V. C., Getachew, A. T., Cho, Y. J., Park, J. S., & Chun, B. S. (2020). Recovery and bio-potentialities of astaxanthin-rich oil from shrimp ((
Peneanus monodon) waste and mackerel (
Scomberomous niphonius) skin using concurrent supercritical CO2 extraction.
J. Supercrit. Fluids, 159, 104773. DOI:
10.1016/j.supflu.2020.104773
[17] Haque, F., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2016). Intensified green production of astaxanthin from
Haematococcus pluvialis.
Food Bioprod. Process, 99, 1-11. DOI:
10.1016/j.fbp.2016.03.002
[18] Haq, M., Ahmed, R., Cho, Y. J., & Chun, B. S. (2017). Quality properties and bio-potentiality of edible oils from Atlantic salmon by-products extracted by supercritical carbon dioxide and conventional methods.
Waste Biomass Valori, 8, 1953-1967. DOI:
10.1007/s12649-016-9710-2
[19] Metcalfe, L. D., Schmitz, A. A., & Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis.
Anal. Chem, 38(3), 514-515.
DOI: 10.1007/BF02641197
[20] Pérez Pavón, J. L., del Nogal Sanchez, M., García Pinto, C., Fernández Laespada, M. E., & Cordero, B. M. (2006). Use of mass spectrometry methods as a strategy for detection and determination of residual solvents in pharmaceutical products.
Anal. Chem.,
78(14), 4901-4908. DOI:
10.1021/ac060426h
[21] Iranian National Standard No. 9670: Determination of cholesterol and sterols in edible fats and oils - Gas chromatography method.
[22] Gulzar, S., & Benjakul, S. (2020). Impact of pretreatment and atmosphere on quality of lipids extracted from cephalothorax of Pacific white shrimp by ultrasonic assisted process.
Food Chem, 309, 125732. DOI:
10.1016/j.foodchem.2019.125732
[23] Raju, N., & Benjakul, S. (2020). Use of beta cyclodextrin to remove cholesterol and increase astaxanthin content in shrimp oil.
Eur. J. Lipid Sci. Technol,
122(2), 1900242. DOI:
10.1002/ejlt.201900242
[24] Ahmadkelayeh, S., & Hawboldt, K. (2020). Extraction of lipids and astaxanthin from crustacean by-products: A review on supercritical CO
2 extraction.
Trends Food Sci Technol, 103, 94-108. DOI:
10.1016/j.tifs.2020.07.016
[25] Wang, J. L., Yu, Z. L., Yin, F. W., Li, D. Y., Liu, H. L., Song, L., & Zhou, D. Y. (2021). Comparison of different solvents for extraction of oils from by-products of shrimps
Penaeus vannamei and
Procambarus clarkia.
JFPP, 45(9), e15754. DOI:
10.1111/jfpp.15754
[26] Gulzar, S., & Benjakul, S. (2018). Ultrasound waves increase the yield and carotenoid content of lipid extracted from cephalothorax of pacific white shrimp (
Litopenaeus vannamei).
Eur. J. Lipid Sci. Technol, 120(5), 1700495. DOI:
10.1002/ejlt.201700495
[27] Santos, C. A. D., Padilha, C. E., Damasceno, K. S., Leite, P. I., Araújo, A. C. D., Freitas, P. R., ... & Assis, C. F. D. (2021). Astaxanthin recovery from shrimp residue by solvent ethanol extraction using choline chloride: Glycerol deep eutectic solvent as adjuvant.
J. Braz. Chem. Soc, 32(5), 1030-1039.
DOI: 10.21577/0103-5053.20210005
[28] Hu, J., Lu, W., Lv, M., Wang, Y., Ding, R., & Wang, L. (2019). Extraction and purification of astaxanthin from shrimp shells and the effects of different treatments on its content.
Rev. Bras. Farmacogn, 29, 24-29. DOI:
10.1016/j.bjp.2018.11.004
[29] Gimeno, M., Ramírez-Hernández, J. Y., Mártinez-Ibarra, C., Pacheco, N., García-Arrazola, R., Bárzana, E., & Shirai, K. (2007). One-solvent extraction of astaxanthin from lactic acid fermented shrimp wastes.
J. Agric. Food Chem, 55(25), 10345-10350. DOI:
10.1021/jf071469h
[30] Ruen-ngam, D., Shotipruk, A., & Pavasant, P. (2011). Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis.
Sep. Sci. Technol, 46(1), 64-70. DOI:
10.1080/01496395.2010.493546
[31] Huang, J., & Hui, B. (2020). Feed-induced Variation in the Carotenoid Composition of Brine Shrimp.
eFood, 1(3), 247-253.
DOI: 10.2991/efood.k.200522.001
[32] Liu, X., McClements, D. J., Cao, Y., & Xiao, H. (2016). Chemical and physical stability of astaxanthin-enriched emulsion-based delivery systems.
Food Biophys, 11(3), 302-310. DOI:
10.1007/s11483-016-9443-6
[33] Bengtsson, A., Alminger, M. L., & Svanberg, U. (2009).
In vitro bioaccessibility of β-carotene from heat-processed orange-fleshed sweet potato.
J. Agri. Food Chem, 57(20), 9693-9898. DOI:
10.1021/jf901692r
[34] Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., Coimbra, J. S. R., Carneiro-Da-Cunha, M. G., & Vicente, A. A. (2011). Nanoemulsions of β-carotene using a high-energy emulsification- evaporation technique.
J. Food Eng, 102(2), 130-135. DOI:
10.1016/j.jfoodeng.2010.08.005
[35] Azimi, O., Mohebbi, M., Farhoosh, R., & Saadatmand-Tarzjan, M. (2020). Discerning expiration status of edible vegetable oils based on color changes during oxidation process: Using digital image and linear discriminant analysis in both primary and secondary oxidations.
IFSTRJ, 15(6), 145-158. DOI:
10.22067/ifstrj.v1396i0.70907
[36] Socaciu, C., Dulf, F., Socaci, S., Ranga, F., Bunea, A., Fetea, F., & Pintea, A. (2022). Phytochemical profile of eight categories of functional edible oils: A metabolomic approach based on chromatography coupled with mass spectrometry.
Appl. Sci, 12(4), 1933. DOI:
10.3390/app12041933
[37] Hossein, O., Abolghasem Esmaeili, F., Majid, S., & Shima Masoudi, A. (2011). Comparison of fatty acid composition between farmed and wild Indian white shrimps, Fnneropenaeus indicus.
FNS, 2, 824-829. DOI:
10.4236/fns.2011.28113
[38] Semenoglou, I., Katsouli, M., Giannakourou, M., & Taoukis, P. (2024). Recovery of omega-3-rich lipids: toward the sustainable valorization of sea-bass industry side streams.
Separations, 11(4), 101. DOI:
10.3390/separations11040101
[39] Aubourg, S. P., Rodríguez, A., Trigo, M., & Medina, I. (2023). Yield enhancement of valuable lipid compounds from squid (doryteuthis gahi) waste by ethanol/acetone extraction.
Foods, 12(14). DOI:
10.3390/foods12142649
[40] Al-Taher, F., & Nemzer, B. (2018). Determination and quantitation of residual solvents in natural food ingredients using a static headspace gas chromatography with flame ionization detection and mass spectrometric detection method.
J. Food Prot, 81(10), 1573-1581. DOI:
10.4315/0362-028X.JFP-18-142
[42] Pharmacopeia, U. S. (2009). Particulate matter in injections. USP/NF General Chapter. In: USP 788. Rockville.
[43] Wypych, G. (2001). Handbook of solvents (1th ed.). Toronto: ChemTec Publishing.
[44] Starciuc, T., Correia, N. T., Guinet, Y., Paccou, L., & Hédoux, A. (2018). Freeze drying of pharmaceuticals and biologicals (2th ed.). Garmisch-Partenkirchen: In Freeze Drying of Pharmaceuticals and Biologicals.
[45] Bhatnagar, B. S., Tchessalov, S., Lewis, L. M., & Johnson, R. (2013). Freeze drying of biologics (4th ed.). Boca Raton: Encyclopedia of pharmaceutical science and technology.
[46] Sampaio, G. R., Bastos, D. H. M., Soares, R. A. M., Queiroz, Y. S., & Torres, E. A. F. S. (2006). Fatty acids and cholesterol oxidation in salted and dried shrimp. Food Chem, 95(2), 344-351. DOI: 10.1016/j.foodchem.2005.02.030
[47] Pires, D. R., De Morais, A. C. N., Coelho, C. C. S., Marinho, A. F., Góes, L. C. D. S. A., Augusta, I. M., ... & Saldanha, T. (2018). Nutritional composition, fatty acids and cholesterol levels in Atlantic white shrimp (Litopenaeus schimitti). Int. Food Res. J, 25(1), 151-157.
[48] Moura, A. F. P. D., & Tenuta-Filho, A. (2002). Effects of processing on free cholesterol and 7-ketocholesterol concentrations in pink-shrimp.
Food Sci. Technol, 22, 117-121.
DOI:10.1590/S0101-20612002000200003
[49] Dayal, J. S., Ponniah, A. G., Khan, H. I., Babu, E. M., Ambasankar, K., & Vasagam, K. K. (2013). Shrimps–a nutritional perspective. Curr. Sci, 1487-1491.
[50] e Silva, E. D. O., Seidman, C. E., Tian, J. J., Hudgins, L. C., Sacks, F. M., & Breslow, J. L. (1996). Effects of shrimp consumption on plasma lipoproteins.
AJCN, 64(5), 712-717.
DOI: 10.1093/ajcn/64.5.712
[51] Zhu, Y., Li, P., Meng, R., Li, X., Qiu, Y., Wang, L., Zhang, S., Zhang, X., Lin, H., Zhai, H., & Liu, K. (2022). Lipid profiles of the heads of four shrimp species by UPLC–Q–Exactive Orbitrap/MS and their cardiovascular activities.
Molecules, 27(2), 350. DOI:
10.3390/molecules27020350
[52] Al-Hassan, J. M., Hinek, A., Renno, W. M., Wang, Y., Liu, Y. F., Guan, R., Wen, X. Y., Litvack, M. L., Lindenmaier, A., Afzal, M., Paul, B., Oommen, S., Nair, D., Kumar, J., Khan, M. A., Palaniyar, N., & Pace-Asciak, C. (2020). Potential mechanism of dermal wound treatment with preparations from the skin gel of arabian gulf catfish: a unique furan fatty acid (F6) and Cholesta-3,5-Diene (S5) recruit neutrophils and fibroblasts to promote wound healing.
Front. pharmacol, 11, 899.
DOI:10.3389/fphar.2020.00899
[54] Bae, M. S., Park, J. K., Kim, K. H., Cho, S. S., Lee, K. Y., & Shon, Z. H. (2018). Emission and cytotoxicity of surgical smoke: Cholesta-3,5-diene released from pyrolysis of prostate tissue.
Atmosphere, 9(10), 381. DOI:
10.3390/atmos9100381
[56] Balti, R., Ben Mansour, M., Zayoud, N., Le Balc’h, R., Brodu, N., Arhaliass, A., & Massé, A. (2020). Active exopolysaccharides based edible coatings enriched with red seaweed (
Gracilaria gracilis) extract to improve shrimp preservation during refrigerated storage.
Food Biosci, 34, 100522. DOI:
10.1016/j.fbio.2019.100522
[57] Mariutti, L. R., & Bragagnolo, N. (2017). Influence of salt on lipid oxidation in meat and seafood products: A review.
Food. Res Int, 94, 90-100.
DOI: 10.1016/j.foodres.2017.02.003
[58] Tu, C. hai, Qi, X. er, Shui, S. shan, Lin, H. min, Benjakul, S., & Zhang, B. (2022). Investigation of the changes in lipid profiles induced by hydroxyl radicals in whiteleg shrimp (
Litopenaeus vannamei) muscle using LC/MS-based lipidomics analysis.
Food Chem, 369, 130925.
DOI: 10.1016/j.foodchem.2021.130925
[59] Pascual-Silva, C., Alemán, A., López-Caballero, M. E., Montero, M. P., & Gómez-Guillén, M. del C. (2022). Physical and oxidative water-in-oil emulsion stability by the addition of liposomes from shrimp waste oil with antioxidant and anti-inflammatory properties.
Antioxidants, 11(11), 2236. DOI:
10.3390/antiox11112236