بررسی استرول‌ها، اسیدهای چرب و شاخص‌های کیفی عصاره لیپیدی حاصل از محصولات جانبی میگوی ببری سبز (Penaeus semisulcatus)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فرآوری محصولات شیلاتی، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

چکیده

باقی‌مانده‌های مواد خام حاصل از فرآوری میگو منبعی از مواد زیست‌فعال ارزشمند (مانند لیپیدها و آستازانتین، یک کاروتنوئید با ظرفیت آنتی‌اکسیدانی بسیار قوی) جهت استفاده در صنایع غذادارویی و آرایشی‌بهداشتی هستند. استخراج این ترکیبات نه تنها می‌تواند اثرات زیست‌محیطی مرتبط با ضایعات حاصل از فرآوری میگو را کاهش دهد، بلکه منجر به مزایای اقتصادی نیز می‌گردد. لذا، هدف از مطالعه حاضر، استخراج عصاره لیپیدی غنی از آستازانتین از محصولات جانبی میگوی ببری سبز (Penaeus semisulcatus) و بررسی استرول‌ها، اسیدهای چرب، میزان آستازانتین و شاخص‌های کیفی عصاره لیپیدی استخراج‌شده بود. نتایج نشان داد بازده استخراج لیپید 81/2%، میزان بازیابی آستازانتین 34/10 میلی‌گرم/صد گرم روغن و شاخص رنگ‌سنجی a* که بیانگر کیفیت مناسب رنگی است 13/18 بود. بررسی ترکیب اسیدهای چرب با آنالیز کروماتوگرافی گازی (GC) نیز نشان داد عصاره لیپیدی میگو غنی از اسیدهای چرب چندغیراشباع امگا-3 (ω-3 PUFA) (48/12%) می‌باشد که اهمیت این منبع لیپیدی را نشان می‌دهد. مقدار کلسترول موجود در عصاره لیپیدی میگو در حدود 570 میلی‌گرم/صد گرم روغن بود که مطابق مقادیر گزارش شده در خصوص محصولات دریایی بود. همچنین، آنالیز ترکیبات لیپیدی نشان داد که عصاره لیپیدی از 13 ترکیب مختلف تشکیل شده است که بیشترین مقدار مربوط به ترکیب Cholesta-3,5-diene می‌باشد. بررسی پایداری اکسایشی عصاره لیپیدی نیز مؤید آن بود که مقادیر شاخص‌های اکسیداسیون (پراکسید: 21/2 میلی‌گرم هیدروپروکسید کومن/کیلوگرم لیپید و اسید تیوباربیتوریک: 31/0 میلی‌گرم مالون‌آلدئید/کیلوگرم لیپید) در سطح مطلوبی قرار دارد. این ویژگی‌ها، محصولات جانبی میگوی ببری سبز را به‌عنوان یک منبع با ارزش از ترکیبات زیست‌فعال و اسیدهای چرب مفید معرفی می‌کند که می‌تواند در صنایع غذایی، غذادارو‌یی و آرایشی‌‌بهداشتی مورد استفاده قرار گیرد.

چکیده تصویری

بررسی استرول‌ها، اسیدهای چرب و شاخص‌های کیفی عصاره لیپیدی حاصل از محصولات جانبی میگوی ببری سبز (Penaeus semisulcatus)

تازه های تحقیق

  • استخراج عصاره لیپیدی غنی از آستازانتین از محصولات جانبی میگوی ببری سبز با حلال استون/هگزان و با روش سوکسله انجام شد.
  • بازده استخراج لیپید (81/2%) و آستازانتین (34/10 میلی­گرم/صد گرم روغن) در سطح مناسبی بود.
  • عصاره لیپیدی میگو غنی از اسیدهای چرب چندغیراشباع امگا-3 (ω-3 PUFA) (48/12%) بود.
  • مقدار کلسترول موجود در عصاره لیپیدی میگو نیز در محدوده قابل قبول بود.
  • امکان استفاده از لیپیدهای استخراجی به‌عنوان مکمل غذایی یا ماده اولیه در تولید محصولات غذایی.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of sterols, fatty acids, and qualitative indicators of lipid extract from green tiger shrimp (Penaeus semisulcatus) by-products

نویسندگان [English]

  • Zahra Mousavi
  • Seyed Fakhreddin Hosseini
Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
چکیده [English]

Raw material residues from shrimp processing are a valuable source of bioactive compounds, such as lipids and astaxanthin (a carotenoid with potent antioxidant properties) for applications in the food, pharmaceutical, and cosmetic industries. Extracting these compounds not only mitigates the environmental impact of shrimp processing waste but also offers significant economic benefits. The present study aimed to extract astaxanthin-rich lipids from green tiger shrimp (Penaeus semisulcatus) by-products and evaluate their sterol and fatty acid profiles, astaxanthin content, and quality indices. The results demonstrated a lipid extraction efficiency of 2.81%, with an astaxanthin recovery rate of 10.34 mg/100 g of oil and a favorable colorimetric index (a* = 18.13), indicating high color quality. Gas chromatography (GC) analysis revealed that the lipid extract was rich in omega-3 polyunsaturated fatty acids (ω-3 PUFAs) (12.48%), underscoring its nutritional significance. The cholesterol content of the shrimp lipid extract was approximately 570 mg/100 g of oil, consistent with typical values reported for marine-derived products. Lipid composition analysis identified 13 distinct compounds, with Cholesta-3,5-diene being the most abundant. Furthermore, the oxidative stability of the extract was confirmed by low oxidation indices (peroxide value: 2.21 mg cumene hydroperoxide/kg lipid; thiobarbituric acid-reactive substances (TBARS): 0.31 mg malonaldehyde (MDA)/kg lipid), indicating good shelf-life potential. These findings highlight green tiger shrimp by-products as a promising source of bioactive compounds and beneficial fatty acids, suitable for utilization in food, pharmaceutical, and cosmetic applications.

کلیدواژه‌ها [English]

  • Shrimp by-products
  • Lipid extract
  • Astaxanthin
  • Polyunsaturated fatty acids
  • Cholesterol
[1] Shiekh, K. A., Benjakul, S., & Gulzar, S. (2021). Impact of pulsed electric field and vacuum impregnation with Chamuang leaf extract on quality changes in Pacific white shrimp packaged under modified atmosphere. LWT, 149, 111899. DOI: 10.1016/j.lwt.2021.111899
[2] Mittal, A., Singh, A., Aluko, R. E., & Benjakul, S. (2021). Pacific white shrimp (Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. J. Food Biochem, 45(1), e13569. 226. DOI: 10.1111/jfbc.13569
[3] Cabanillas-Bojórquez, L. A., Gutiérrez-Grijalva, E. P., Castillo-López, R. I., Contreras-Angulo, L. A., Angulo-Escalante, M. A., López-Martínez, L. X., Ríos-Iribe, E. Y., & Heredia, J. B. (2021). Bioprocessing of shrimp waste using novel industrial by-products: Effects on nutrients and lipophilic antioxidants. Ferment, 7(4), 312. DOI: 10.3390/fermentation7040312
[4] Gulzar, S., Raju, N., Nagarajarao, R. C., & Benjakul, S. (2020). Oil and pigments from shrimp processing by-products: Extraction, composition, bioactivities and its application-A review. Trends Food Sci Technol, 100, 307-319. DOI: 10.1016/j.tifs.2020.04.005
[5] Subramanian, B., Thibault, M. H., Djaoued, Y., Pelletier, C., Touaibia, M., & Tchoukanova, N. (2015). Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to “Astaxanthin-rich shrimp oil” obtained from processing of Nordic shrimps. Analyst, 140(21), 7423-7433. DOI: 10.1039/c5an01261a
[6] Miniadis-Meimaroglou, S., & Sinanoglou, V.J. (2013). Lipid profile and nutritional evaluation of shrimps. AFSci, 661(2), 21-40.
[7] Raju, N., Gulzar, S., Buamard, N., Ma, L., Ying, X., Zhang, B., & Benjakul, S. (2021). Comparative study of astaxanthin, cholesterol, fatty acid profiles, and quality indices between shrimp oil extracted from hepatopancreas and cephalothorax. Front. Nutr, 8, 803664. DOI: 10.3389/fnut.2021.803664
[8] Gómez-Estaca, J., Calvo, M. M., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Characterization and storage stability of astaxanthin esters, fatty acid profile and α-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient. Food Chem, 216, 37-44. DOI: 10.1016/j.foodchem.2016.08.016
[9] Wu, H., Niu, H., Shao, A., Wu, C., Dixon, B. J., Zhang, J., ... & Wang, Y. (2015). Astaxanthin as a potential neuroprotective agent for neurological diseases. Mar. Drugs, 13(9), 5750-5766. DOI: 10.3390/md13095750
[10] Björkegren, J. L., & Lusis, A. J. (2022). Atherosclerosis: recent developments. Cell, 185(10), 1630-1645. DOI: 10.1016/j.cell.2022.04.004
[11] Raju, N., Sae-leaw, T., Osako, K., & Benjakul, S. (2022). Improved cholesterol depletion with enhanced astaxanthin and polyunsaturated fatty acids of lipid from Pacific white shrimp cephalothorax using prior ethanolic separation of polar lipid and β-Cyclodextrin. JFST, 59(6), 2255–2262. DOI: 10.1007/s13197-021-05238-7
[12] Aref, M., Movahedi, A., Heidari-Beni, M., & Kelishadi, R. (2023). Effects of shrimp oil on cardio-metabolic risk factors in children and adolescents. IJVNR, 93 (6), 490-497. DOI: 10.1024/0300-9831/a000755
[13] Ei, Z. Z., Benjakul, S., Buamard, N., Visuttijai, K., & Chanvorachote, P. (2022). Shrimp lipid prevents endoplasmic reticulum-mediated endothelial cell damage. Foods, 11(19), 3076. DOI: 10.3390/foods11193076
[14] Sharayei, P., Azarpazhooh, E., Zomorodi, S., Einafshar, S., & Ramaswamy, H. S. (2021). Optimization of ultrasonic-assisted extraction of astaxanthin from green tiger (Penaeus semisulcatus) shrimp shell. Ultrason. Sonochem, 76, 105666. DOI: 10.1016/j.ultsonch.2021.105666
[15] Rodrigues, L. A., Pereira, C. V., Leonardo, I. C., Fernández, N., Gaspar, F. B., Silva, J. M., ... & Matias, A. A. (2020). Terpene-based natural deep eutectic systems as efficient solvents to recover astaxanthin from brown crab shell residues. ACS Sustain. Chem. Eng, 8(5), 2246-2259. DOI: 10.1021/acssuschemeng.9b06283
[16] Roy, V. C., Getachew, A. T., Cho, Y. J., Park, J. S., & Chun, B. S. (2020). Recovery and bio-potentialities of astaxanthin-rich oil from shrimp ((Peneanus monodon) waste and mackerel (Scomberomous niphonius) skin using concurrent supercritical CO2 extraction. J. Supercrit. Fluids, 159, 104773. DOI: 10.1016/j.supflu.2020.104773
[17] Haque, F., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2016). Intensified green production of astaxanthin from Haematococcus pluvialis. Food Bioprod. Process, 99, 1-11. DOI: 10.1016/j.fbp.2016.03.002
[18] Haq, M., Ahmed, R., Cho, Y. J., & Chun, B. S. (2017). Quality properties and bio-potentiality of edible oils from Atlantic salmon by-products extracted by supercritical carbon dioxide and conventional methods. Waste Biomass Valori, 8, 1953-1967. DOI: 10.1007/s12649-016-9710-2
[19] Metcalfe, L. D., Schmitz, A. A., & Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem, 38(3), 514-515. DOI: 10.1007/BF02641197
[20] Pérez Pavón, J. L., del Nogal Sanchez, M., García Pinto, C., Fernández Laespada, M. E., & Cordero, B. M. (2006). Use of mass spectrometry methods as a strategy for detection and determination of residual solvents in pharmaceutical products. Anal. Chem., 78(14), 4901-4908. DOI: 10.1021/ac060426h
[21] Iranian National Standard No. 9670: Determination of cholesterol and sterols in edible fats and oils - Gas chromatography method.
[22] Gulzar, S., & Benjakul, S. (2020). Impact of pretreatment and atmosphere on quality of lipids extracted from cephalothorax of Pacific white shrimp by ultrasonic assisted process. Food Chem, 309, 125732. DOI: 10.1016/j.foodchem.2019.125732
[23] Raju, N., & Benjakul, S. (2020). Use of beta cyclodextrin to remove cholesterol and increase astaxanthin content in shrimp oil. Eur. J. Lipid Sci. Technol, 122(2), 1900242. DOI: 10.1002/ejlt.201900242
[24] Ahmadkelayeh, S., & Hawboldt, K. (2020). Extraction of lipids and astaxanthin from crustacean by-products: A review on supercritical CO2 extraction. Trends Food Sci Technol, 103, 94-108. DOI: 10.1016/j.tifs.2020.07.016
[25] Wang, J. L., Yu, Z. L., Yin, F. W., Li, D. Y., Liu, H. L., Song, L., & Zhou, D. Y. (2021). Comparison of different solvents for extraction of oils from by-products of shrimps Penaeus vannamei and Procambarus clarkia. JFPP, 45(9), e15754. DOI: 10.1111/jfpp.15754
[26] Gulzar, S., & Benjakul, S. (2018). Ultrasound waves increase the yield and carotenoid content of lipid extracted from cephalothorax of pacific white shrimp (Litopenaeus vannamei). Eur. J. Lipid Sci. Technol, 120(5), 1700495. DOI: 10.1002/ejlt.201700495
[27] Santos, C. A. D., Padilha, C. E., Damasceno, K. S., Leite, P. I., Araújo, A. C. D., Freitas, P. R., ... & Assis, C. F. D. (2021). Astaxanthin recovery from shrimp residue by solvent ethanol extraction using choline chloride: Glycerol deep eutectic solvent as adjuvant. J. Braz. Chem. Soc, 32(5), 1030-1039.  DOI: 10.21577/0103-5053.20210005
[28] Hu, J., Lu, W., Lv, M., Wang, Y., Ding, R., & Wang, L. (2019). Extraction and purification of astaxanthin from shrimp shells and the effects of different treatments on its content. Rev. Bras. Farmacogn, 29, 24-29. DOI: 10.1016/j.bjp.2018.11.004
[29] Gimeno, M., Ramírez-Hernández, J. Y., Mártinez-Ibarra, C., Pacheco, N., García-Arrazola, R., Bárzana, E., & Shirai, K. (2007). One-solvent extraction of astaxanthin from lactic acid fermented shrimp wastes. J. Agric. Food Chem, 55(25), 10345-10350. DOI: 10.1021/jf071469h
[30] Ruen-ngam, D., Shotipruk, A., & Pavasant, P. (2011). Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Sep. Sci. Technol, 46(1), 64-70. DOI: 10.1080/01496395.2010.493546
[31] Huang, J., & Hui, B. (2020). Feed-induced Variation in the Carotenoid Composition of Brine Shrimp. eFood, 1(3), 247-253.  DOI: 10.2991/efood.k.200522.001
[32] Liu, X., McClements, D. J., Cao, Y., & Xiao, H. (2016). Chemical and physical stability of astaxanthin-enriched emulsion-based delivery systems. Food Biophys, 11(3), 302-310. DOI: 10.1007/s11483-016-9443-6
[33] Bengtsson, A., Alminger, M. L., & Svanberg, U. (2009). In vitro bioaccessibility of β-carotene from heat-processed orange-fleshed sweet potato. J. Agri. Food Chem, 57(20), 9693-9898. DOI: 10.1021/jf901692r
[34] Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., Coimbra, J. S. R., Carneiro-Da-Cunha, M. G., & Vicente, A. A. (2011). Nanoemulsions of β-carotene using a high-energy emulsification- evaporation technique. J. Food Eng, 102(2), 130-135. DOI: 10.1016/j.jfoodeng.2010.08.005
[35] Azimi, O., Mohebbi, M., Farhoosh, R., & Saadatmand-Tarzjan, M. (2020). Discerning expiration status of edible vegetable oils based on color changes during oxidation process: Using digital image and linear discriminant analysis in both primary and secondary oxidations. IFSTRJ, 15(6), 145-158. DOI: 10.22067/ifstrj.v1396i0.70907
[36] Socaciu, C., Dulf, F., Socaci, S., Ranga, F., Bunea, A., Fetea, F., & Pintea, A. (2022). Phytochemical profile of eight categories of functional edible oils: A metabolomic approach based on chromatography coupled with mass spectrometry. Appl. Sci, 12(4), 1933. DOI: 10.3390/app12041933
[37] Hossein, O., Abolghasem Esmaeili, F., Majid, S., & Shima Masoudi, A. (2011). Comparison of fatty acid composition between farmed and wild Indian white shrimps, Fnneropenaeus indicus. FNS, 2, 824-829. DOI: 10.4236/fns.2011.28113
[38] Semenoglou, I., Katsouli, M., Giannakourou, M., & Taoukis, P. (2024). Recovery of omega-3-rich lipids: toward the sustainable valorization of sea-bass industry side streams. Separations, 11(4), 101. DOI: 10.3390/separations11040101
[39] Aubourg, S. P., Rodríguez, A., Trigo, M., & Medina, I. (2023). Yield enhancement of valuable lipid compounds from squid (doryteuthis gahi) waste by ethanol/acetone extraction. Foods, 12(14). DOI: 10.3390/foods12142649
[40] Al-Taher, F., & Nemzer, B. (2018). Determination and quantitation of residual solvents in natural food ingredients using a static headspace gas chromatography with flame ionization detection and mass spectrometric detection method. J. Food Prot, 81(10), 1573-1581. DOI: 10.4315/0362-028X.JFP-18-142
[41] U.S. Food and Drug Administration. (2012). Current good manufacturing practice in manufacturing, packing, or holding human food, In: FDA, Washington, DC. https://www.ecfr.gov/current/title-21/part-110
[42] Pharmacopeia, U. S. (2009). Particulate matter in injections. USP/NF General Chapter. In: USP 788. Rockville.
[43] Wypych, G. (2001). Handbook of solvents (1th ed.). Toronto: ChemTec Publishing.
[44] Starciuc, T., Correia, N. T., Guinet, Y., Paccou, L., & Hédoux, A. (2018). Freeze drying of pharmaceuticals and biologicals (2th ed.). Garmisch-Partenkirchen: In Freeze Drying of Pharmaceuticals and Biologicals.
[45] Bhatnagar, B. S., Tchessalov, S., Lewis, L. M., & Johnson, R. (2013). Freeze drying of biologics (4th ed.). Boca Raton: Encyclopedia of pharmaceutical science and technology.
[46] Sampaio, G. R., Bastos, D. H. M., Soares, R. A. M., Queiroz, Y. S., & Torres, E. A. F. S. (2006). Fatty acids and cholesterol oxidation in salted and dried shrimp. Food Chem, 95(2), 344-351. DOI: 10.1016/j.foodchem.2005.02.030
[47] Pires, D. R., De Morais, A. C. N., Coelho, C. C. S., Marinho, A. F., Góes, L. C. D. S. A., Augusta, I. M., ... & Saldanha, T. (2018). Nutritional composition, fatty acids and cholesterol levels in Atlantic white shrimp (Litopenaeus schimitti). Int. Food Res. J, 25(1), 151-157.
[48] Moura, A. F. P. D., & Tenuta-Filho, A. (2002). Effects of processing on free cholesterol and 7-ketocholesterol concentrations in pink-shrimp. Food Sci. Technol, 22, 117-121.  DOI:10.1590/S0101-20612002000200003
[49] Dayal, J. S., Ponniah, A. G., Khan, H. I., Babu, E. M., Ambasankar, K., & Vasagam, K. K. (2013). Shrimps–a nutritional perspective. Curr. Sci, 1487-1491.
[50] e Silva, E. D. O., Seidman, C. E., Tian, J. J., Hudgins, L. C., Sacks, F. M., & Breslow, J. L. (1996). Effects of shrimp consumption on plasma lipoproteins. AJCN, 64(5), 712-717. DOI: 10.1093/ajcn/64.5.712
[51] Zhu, Y., Li, P., Meng, R., Li, X., Qiu, Y., Wang, L., Zhang, S., Zhang, X., Lin, H., Zhai, H., & Liu, K. (2022). Lipid profiles of the heads of four shrimp species by UPLC–Q–Exactive Orbitrap/MS and their cardiovascular activities. Molecules, 27(2), 350. DOI: 10.3390/molecules27020350
[52] Al-Hassan, J. M., Hinek, A., Renno, W. M., Wang, Y., Liu, Y. F., Guan, R., Wen, X. Y., Litvack, M. L., Lindenmaier, A., Afzal, M., Paul, B., Oommen, S., Nair, D., Kumar, J., Khan, M. A., Palaniyar, N., & Pace-Asciak, C. (2020). Potential mechanism of dermal wound treatment with preparations from the skin gel of arabian gulf catfish: a unique furan fatty acid (F6) and Cholesta-3,5-Diene (S5) recruit neutrophils and fibroblasts to promote wound healing. Front. pharmacol, 11, 899.  DOI:10.3389/fphar.2020.00899
[53] Sigma-Aldrich. (n.d.). Cholest-5-en-3-ol (3β)-, 3-(carbonochloridate) [C6012]. Retrieved March 1, 2025, from https://www.sigmaaldrich.com/US/en/product/sigma/c6012
[54] Bae, M. S., Park, J. K., Kim, K. H., Cho, S. S., Lee, K. Y., & Shon, Z. H. (2018). Emission and cytotoxicity of surgical smoke: Cholesta-3,5-diene released from pyrolysis of prostate tissue. Atmosphere, 9(10), 381. DOI: 10.3390/atmos9100381
[55] MedChemExpress. (n.d.). Cholesta-3,5-diene. Retrieved March 1, 2025, from https://www.medchemexpress.com/cholesta-3-5-diene.html
[56] Balti, R., Ben Mansour, M., Zayoud, N., Le Balc’h, R., Brodu, N., Arhaliass, A., & Massé, A. (2020). Active exopolysaccharides based edible coatings enriched with red seaweed (Gracilaria gracilis) extract to improve shrimp preservation during refrigerated storage. Food Biosci, 34, 100522. DOI: 10.1016/j.fbio.2019.100522
[57] Mariutti, L. R., & Bragagnolo, N. (2017). Influence of salt on lipid oxidation in meat and seafood products: A review. Food. Res Int, 94, 90-100. DOI: 10.1016/j.foodres.2017.02.003
[58] Tu, C. hai, Qi, X. er, Shui, S. shan, Lin, H. min, Benjakul, S., & Zhang, B. (2022). Investigation of the changes in lipid profiles induced by hydroxyl radicals in whiteleg shrimp (Litopenaeus vannamei) muscle using LC/MS-based lipidomics analysis. Food Chem, 369, 130925. DOI: 10.1016/j.foodchem.2021.130925
[59] Pascual-Silva, C., Alemán, A., López-Caballero, M. E., Montero, M. P., & Gómez-Guillén, M. del C. (2022). Physical and oxidative water-in-oil emulsion stability by the addition of liposomes from shrimp waste oil with antioxidant and anti-inflammatory properties. Antioxidants, 11(11), 2236. DOI: 10.3390/antiox11112236
دوره 12، شماره 4
مرداد 1404
صفحه 415-431
  • تاریخ دریافت: 14 اردیبهشت 1404
  • تاریخ بازنگری: 25 مرداد 1404
  • تاریخ پذیرش: 25 مرداد 1404
  • تاریخ اولین انتشار: 25 مرداد 1404
  • تاریخ انتشار: 01 مرداد 1404