[1] Moudi, M., Zivyar, N., & Bagherzade, G. (2020). Identification of phenolic and flavenoid compounds in Crocus pallasii subsp. haussknechtii (Boiss. & Reut. ex Maw) B.Mathew. and antibacterial analysis. Journal of Saffron Research, 8, 127-140. https://doi.org/10.22077/jsr.2020.2857.1115
[2] Najari, G., Aazami, F., Taghi Mollaei, Y., & Fattahi, S. (2016). The morphological survey of wild saffron species in forests and rangeland of ilam province. Forest Strategical Approchment Journal, 1, 46-53.
[3] Tahmasebi, Z., Feyzi, H., Fallahi, N., & Mohammadi, S. (2025). Identification and sequencing of CCD4a and CCD4b genes in wild saffron. Saffron Agronomy and Technology, 12, 471-485. https://doi.org/10.22048/jsat.2025.476038.1539
[4] Khodadadi, M., & Masoumi, A. (2025). Recent drying technologies used for drying poultry litter (principles, advantages and disadvantages): A comprehensive review. Poultry Science, 104, 104677. https://doi.org/10.1016/j.psj.2024.104677
[5] Khodadadi, M., Masoumi, A., & Sadeghi, M. (2024). Drying, a practical technology for reduction of poultry litter (environmental) pollution: methods and their effects on important parameters. Poultry Science, 103, 104277. https://doi.org/10.1016/j.psj.2024.104277
[6] Salehi, F. (2023). Recent progress and application of freeze dryers for agricultural product drying. ChemBioEng Rev., 10, 618-627. https://doi.org/10.1002/cben.202300003
[7] Heirani, S., Movagharnejad, K., & Nanvakenari, S. (2024). Optimization and modeling of the stale bread drying with three different dryers. Innov. Food Technol., 12, 17-33. https://doi.org/10.22104/ift.2024.7082.2181
[8] Safari, J., Hashemi, J., & Ranjbar Nedamani, A. (2023). Investigating changes in color and shrinkage of dried apple slices using image processing. Iran. Food Sci. Technol. Res. J., 19, 527-540. https://doi.org/10.22067/ifstrj.2022.77460.1188
[9] Salehi, F., Goharpour, K., & Razavi Kamran, H. (2024). Effects of different pretreatment techniques on the color indexes, drying characteristics and rehydration ratio of eggplant slices. Results Eng., 21, 101690. https://doi.org/10.1016/j.rineng.2023.101690
[10] Aarabi jeshvaghani, A., Omidi, S., Zaki Dizaji, H., & Shahdadi, F. (2024). Producing beetroot powder by using foaming agent maltodextrin and milk protein concentrate in foam mat-microwave drying method. Innov. Food Technol., 11, 114-139. https://doi.org/10.22104/ift.2024.6679.2165
[11] Salehi, F. (2020). Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. Int. J. Fruit Sci., 20, 586-602. https://doi.org/10.1080/15538362.2019.1616243
[12] Jafari, F., Movagharnejad, K., & Sadeghi, E. (2023). Evaluation of far-infrared drying on the quality properties of zucchini slices: influence of operating parameters. Innov. Food Technol., 11, 47-59. https://doi.org/10.22104/ift.2023.6235.2138
[13] Castro, A.M., Mayorga, E.Y., & Moreno, F.L. (2018). Mathematical modelling of convective drying of fruits: A review. J. Food Eng., 223, 152-167. https://doi.org/10.1016/j.jfoodeng.2017.12.012
[14] Akermi, S., Chaari, M., Elhadef, K., Sharma, A., Dey, A., Choudhary, A., Sinha, S., Festuccia, R., Mellouli, L., & Smaoui, S. (2025) Chapter 13 - Bioactive compounds and cancer prevention: a nutritional approach, in: T. Sarkar, S. Smaoui, A.T. Petkoska (Eds.) Unleashing the Power of Functional Foods and Novel Bioactives, Academic Press, pp. 257-270.
[15] Chociej, P., Foss, K., Jabłońska, M., Ustarbowska, M., & Sawicki, T. (2024). The profile and content of polyphenolic compounds and antioxidant and anti-glycation properties of root extracts of selected medicinal herbs. Plant Foods Hum. Nutr., 79, 468-473. https://doi.org/10.1007/s11130-024-01180-z
[16] Pinela, J., Dias, M.I., Pereira, C., & Alonso-Esteban, J.I., Antioxidant activity of foods and natural products, in: Molecules, 2024.
[17] Doymaz, I. (2007). The kinetics of forced convective air-drying of pumpkin slices. J. Food Eng., 79, 243-248.
[18] Esmaili Adabi, M., Mosavi Seyedi, S.R., Kalantari, D., & Ghavami Adl, B. (2015). Mathematical modelling, kinetics and energy consumption for drying aloe vera gel in hot air dryer with exhaust air recycle. Journal of food science and technology(Iran), 13, 73-83.
[19] Salehi, F. (2023). Effects of ultrasonic pretreatment and drying approaches on the drying kinetics and rehydration of sprouted mung beans. Legum. sci., 5, e211. https://doi.org/10.1002/leg3.211
[20] Salehi, F., & Satorabi, M. (2021). Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums. Int. J. Fruit Sci., 21, 519-527. https://doi.org/10.1080/15538362.2021.1908202
[21] Abd El-Baset, W.S., & Almoselhy, R.I. (2023). Effect of baking temperature on quality and safety of school meal biscuits. Food Sci. Appl. Biotechnol., 6, 250-262. https://doi.org/10.30721/fsab2023.v6.i2.258
[22] Salehi, F., & Kashaninejad, M. (2014). Effect of different drying methods on rheological and textural properties of balangu seed gum. Drying Technol., 32, 720-727. https://doi.org/10.1080/07373937.2013.858264
[23] İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat Mass Transfer., 54, 2101-2112. https://doi.org/10.1007/s00231-018-2294-6
[24] Aghili nategh, N., & Dalvand, M.J. (2023). Measurement and prediction of microwave efficiency during drying of apple leaves. Journal of Research in Mechanics of Agricultural Machinery, 12, 11-21. https://doi.org/10.22034/jrmam.2023.14049.610