کاربرد پسماندهای طبیعی در تولید بسته‌بندی‌های فعال برای نگهداری مواد غذایی

نوع مقاله : مقاله مروری

نویسنده

گروه بهداشت و کنترل کیفی مواد غذایی، دانشکده دامپزشکی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

امروزه استفاده از بسته‌بندی‌های پلاستیکی در مواد غذایی، به دلیل عدم تجزیه‌پذیری و دوام طولانی در محیط زیست و همچنین آزادسازی مواد سمی به درون غذا و حتی محیط زیست، موجب نگرانی مصرف‌کنندگان شده است. بنابراین طراحی و ساخت بسته‌بندی‌های زیست تخریب‌پذیر با منشا طبیعی بسیار مورد استقبال پژوهشگران قرار گرفته است. برای تولید این نوع بسته-بندی‌ها می‌توان از ترکیبات طبیعی حاصل از پسماندهای مواد غذایی استفاده نمود. بسیاری از این پسماندها حاوی ترکیبات آنتی‌اکسیدان و ضدمیکروب هستند که می‌توانند موجب تاخیر در فساد مواد غذایی و افزایش ماندگاری آن‌ها شوند. همچنین بسیاری از این نوع ضایعات حاوی رنگدانه‌های نشانگر هستند که با تغییرات فاکتورهایی نظیر pH، گاز‌های دی‌اکسیدکربن، ترکیبات نیتروژنی فرار، دما و زمان تغییر رنگ می‌دهند و می‌توانند در تولید بسته‌بندی‌های هوشمند در مواد غذایی به کار روند. در این مقاله به مرور انواع پسماندهای مواد غذایی که تاکنون از آن‌ها در بسته‌بندی مواد غذایی استفاده شده است، پرداخته می-شود. همچنین نوع ماده موثره آن‌ها و خواصی که در ماده غذایی بسته‌بندی شده از خود نشان داده‌اند، معرفی خواهد شد. برای جمع‌آوری این مطالب از اوایل اسفند‌ماه 1402 تا اواخر تیرماه 1403 تعداد 203 مقاله از موتورهای جستجوگر Google Scholar، Science‌Direct، MDPI، Cite‌Seer، Springer، پایگاه مرکز اطلاعات علمی جهاد دانشگاهی(SID) و سیویلیکا دریافت و مطالعه شد که از بین آن‌ها 99 منبع مورد استفاده قرار گرفت. از مطالعه حاضر نتیجه‌گیری می‌شود که از پسماندهای طبیعی که روزانه بطور گسترده‌ای در دنیا تولید و دور ریخته می‌شوند، می‌توان مواد زیست فعال نظیر ترکیبات ضدمیکروب، آنتی‌اکسیدان، نشانگر، بیوپلیمرهای پروتئینی، پلی‌ساکاریدی و لیپیدی را شناسایی و استخراج نمود و از آن‌ها در تولید بسته‌بندی‌های ایمن، مقرون-بصرفه، در دسترس، فعال و هوشمند برای حفظ کیفیت و افزایش ماندگاری مواد غذایی استفاده کرد. این بسته‌بندی‌های زیست تخریب‌پذیر، جایگزینی مناسب برای انواع بسته‌بندی‌های پرچالش پلاستیکی امروزی پیشنهاد می‌شوند.

چکیده تصویری

کاربرد پسماندهای طبیعی در تولید بسته‌بندی‌های فعال برای نگهداری مواد غذایی

تازه های تحقیق

  • پسماندهای طبیعی شامل پسماندهای پلیمری و غیرپلیمری هستند.
  • پسماندهای طبیعی پلیمری را می توان برای تولید فیلم و پوشش های خوراکی به کار گرفت.
  • پسماندهای طبیعی غیرپلیمری را می توان جهت فعالسازی و هوشمند سازی بسته بندی ها استفاده کرد.
  • با جایگزینی مشتقات نفتی با پسماندهای طبیعی می توان بسته بندی های زیست تخریب پذیر، فعال و سالم تولید نمود.
  • با جایگزینی مشتقات نفتی با پسماندهای طبیعی می توان بسته بندی های مقرون بصرفه، ارزان و هوشمند تولید نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Natural waste application in production of active packaging for food preservation

نویسنده [English]

  • Behnaz Bazargani-Gilani
Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Recently, the using of plastic packaging in food products has caused consumer concerns due to its non-degradability and long durability in the environment, the release of toxic substances into the food and even the environment, as well. Therefore, the design and production of biodegradable packaging with natural origin has been highly welcomed by researchers. The extracted natural compounds of food waste can be used to produce this type of packaging. Many of these wastes contain antioxidant and antimicrobial agents that can delay food spoilage and increase their shelf life. Also, some of natural waste contain indicator pigments that show color change against pH, carbon dioxide concentration, volatile nitrogen compounds, storage temperature and time changes of food, and can be used in the production of food smart packaging. This study reviews the types of food waste that have been used in food packaging so far. Also, their active ingredient and features in the packaged food are introduced. This review carried out from the beginning of March 2024 to the end of July 2024, 203 articles were studied from the researcher engines such as Google Scholar, ScienceDirect, MDPI, CiteSeer, Springer, Scientific Information database (SID) and Civilica which 99 sources were used in the present study. It can be concluded from the present study that the natural wastes that is widely produced and thrown away in the world every day can be used for identification and extraction the bioactive substances such as antimicrobial, antioxidants, indicator compounds and protein, polysacharadie and lipid biopolymers. By using these extracted materials, the safe, affordable, accessible, active and intelligent packaging can be produced to quality and shelf life enhancement of food during storage period. These biodegradable packages are suggested as a suitable alternative to today''s challenging plastic packages.

کلیدواژه‌ها [English]

  • Natural waste
  • Food packaging
  • Bioactive ingredients
  • Natural indicators
[1] Feyzollahi, Y., Golmohammadi, A., Nematollahzadeh, A., & Tahmasebi, M.  (2022). Evaluation the effect of biodegradable active packaging based on Zein containing Zataria multiflora essential oil on postharvest shelf life of strawberry. Innov. Food Technol., 9(2),113-127. [In Persian] https://doi.org/10.22104/jift.2021.5248.2071
[2] Sodeifi, B., Nazarnezhad, N., & Sharifi, S.H. (2020). Effect of biodegradable films based on chitosan/polyvinyl alcohol/fish gelatin incorporated with cinnamaldehyde on shelf-life extension of rainbow trout (Oncorhynchus mykiss) fillets. Innov. Food Technol., 7(2), 223-242. [In Persian] https://doi.org/10.22104/jift.2019.3628.1869
[3] Shahrampour, D., Khomeiri, M., Kashiri, M., &  Razavi, S.M.A. (2021). Evaluation of probiotic bioactive edible coating application on qualitative properties of fresh strawberry. Innov. Food Technol., 8(4), 443-456. [In Persian] https://doi.org/10.22104/jift.2020.3811.1902
[4] Mohammadalinejhad, S., Almasi, H., & Moradi, M. (2020). Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control., 113, 107169. https://doi.org/10.1016/j.foodcont.2020.107169
[5] khodabakhsh, P., & Bazargani‑Gilani, B. (2025). Comparison of pH and Gas Sensitivity of Chitosan/Polyvinyl Alcohol Smart Film Containing Beet Root Peel and Red Cabbage Indicators in Milk Spoilage Monitoring. J. Food Anal. Methods., [In press] https://doi.org/10.1007/s12161-025-02774-2
[6] Beigizadeh, S., & Bazargani‑Gilani, B. (2025). Chitosan/polyvinyl alcohol flm containing beetroot peel and red cabbage extracts in freshness monitoring of trout fllet: gas or pH indicators. J. Food Meas. Charact., 19,736–752. https://doi.org/10.1007/s11694-024-03006-7
[7] Bazargani-Gilani, B., Izadpanahi, Z., Kafrashi, Z., Salimi, F., & Zarei, F. (2023). Introducing and Efficiency of Some Natural pH-Indicators for Use in Smart Food Packaging. J. Packag. Sci. Technol., 14, 15-23. [In Persian] https://doi.org/20.1001.1.22286675.1402.14.55.2.0
[8] Latos-Brozio, M., & Masek, A. (2020). The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food Chem Toxicol., 135, 110975. https://doi.org/10.1016/j.fct.2019.110975
[9] Collins M. N, Nechifor, M., Tanasa, M., Zanoaga, M., McLoughlin, A., Stróżyk, M. A.,  Culebras, M., & Teacă, C. A.  (2019). Valorization of lignin in polymer and composite systems for advanced engineering applications – A review . Int. J. Biol. Macromol., 131, 828-849. https://doi.org/10.1016/j.ijbiomac.2019.03.069
[10] Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol., 199, 103-112. https://doi.org/10.1016/j.biortech.2015.10.009
[11] Mazaheri Tehrani, M., Mortazavi, S. A. Shahidi, F., & Mohalati, M. R. N. (2003). Evaluation of qualitative charachtristics of different varieties of tomatoes. J. Agric. Nat. Res., 10, 65-76.
[12] Mazaheri Tehrani, M., Mortazavi, S. A., Ziyaalhagh, H. R., & Ghandi, A. (2007). Production and processing of tomato, 3 ed. Tehran, Iran: Marz Danesh. [In Persian]
[13] Fallahi, M. (2006). Tomato processing technology, 5  ed. Mashhad, Iran: Marz Danesh. [In Persian]
[14] Persia, M. E., Parsons, C. M., Schang, M., & Azcona, J. (2003). Nutritional evaluation of dried tomato seeds. Poult. Sci., 82, 141-146. https://doi.org/10.1093/ps/82.1.141
[15] Mansoori, B., Modirsanei, M., Radfar, M., Kiaei, M. M., Farkhoy, M., & Honarzad, J. (2008). Digestibility and metabolisable energy values of dried tomato pomace for laying and meat type cockerels. Anim. Feed Sci. Technol., 141, 384-390. https://doi.org/10.1016/j.anifeedsci.2007.06.029
[16] Al-Muhtaseb, A. A. H., Al-Harahsheh, M., Hararah, M., & Magee, T. R. A. (2010). Drying characteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pre-treatment. Ind Crops Prod., 31, 171-1. https://doi.org/10.1016/j.indcrop.2009.10.002
[17] Haddadin, M. S. Y., Abu-Reesh, I. M., Haddadin, F. A. S., & Robinson, R. K. (2001). Utilisation of tomato pomace as a substrate for the production of vitamin B12 – a preliminary appraisal. Bioresour. Technol., 78, 225-230. https://doi.org/10.1016/S0960-8524(01)00018-9
[18] Sogi, D. S., Bhatia, R. S., Garg, K., & Bawa, A. S. (2005). Biological evaluation of tomato waste seed meals and protein concentrate. Food Chem., 89, 53-56. https://doi.org/10.1016/j.foodchem.2004.01.083
[19] Demirbas, A. (2010). Oil, micronutrient and heavy metal contents of tomatoes. Food Chem., 118, 504-507. https://doi.org/10.1016/j.foodchem.2009.05.007
[20] Toor R. K., & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Res. Int., 38, 487-494. https://doi.org/10.1016/j.foodres.2004.10.016
[21] García Herrera, P., Sánchez-Mata, M. C., & Cámara, M. (2010). Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innov. Food Sci. Emerg. Technol., 11, 707-711. https://doi.org/10.1016/j.ifset.2010.07.005
[22] Calvo, M. M., García, M. L., & Selgas, M. D. (2008). Dry fermented sausages enriched with lycopene from tomato peel. Meat Sci., 80, 167-172. https://doi.org/10.1016/j.meatsci.2007.11.016
[23] Benakmoum, A., Abbeddou, S., Ammouche, A., Kefalas, P., & Gerasopoulos, D. (2008). Valorisation of low quality edible oil with tomato peel waste. Food Chem., 110, 684-690. https://doi.org/10.1016/j.foodchem.2008.02.063
[24] Elbadrawy, E., & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. .Chem., 9, S1010-S1018. https://doi.org/10.1016/j.arabjc.2011.11.011
[25] Stajčić, S., Ćetković, G., Čanadanović-Brunet, J., Djilas, S., Mandić, A., & Četojević-Simin, D. (2015). Tomato waste: Carotenoids content, antioxidant and cell growth activities. Food Chem., 172, 225-232. https://doi.org/10.1016/j.foodchem.2014.09.069
[26] Tavakkoli, E., Bazargani-Gilani, B., & Pajohi-Alamoti, M. (2020). The impacts of tomato residuum extract with Arabic gum and dill essential oil on the shelf life improvement of trout fillets stored at chilly condition. J. Food Saf., 40(4), e12812. https://doi.org/10.1111/jfs.12812
[27] Eyiler, E., & Oztan, A. (2011). Production of frankfurters with tomato powder as a natural additive. LWT - Food Sci. Technol., 44(1), 307-311. https://doi.org/10.1016/j.lwt.2010.07.004
[28] Moradnia, M., Mohammadkhani, N., Azizi, B., Mohammadi, M., Ebrahimpour, S., Tabatabaei-Malazy, O., . . . Ale-Ebrahim, M. (2024). The power of Punica granatum: A natural remedy for oxidative stress and inflammation; a narrative review. J. Ethnopharmacol., 330, 118243. https://doi.org/10.1016/j.jep.2024.118243
[29] Longtin, R. (2003). The pomegranate: nature's power fruit? J. Natl. Cancer Inst., 95(5), 346-348. doi: 10.1093/jnci/95.5.346.
[30] Mirdehghan, S. H., & Rahemi, M. (2007). Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L.) fruit. Sci. Hortic., 111(2), 120-127. https://doi.org/10.1016/j.scienta.2006.10.001
[31] Melgarejo, P., Salazar, D. M., Amorós, A., & Artés, F. (1995). Total lipids content and fatty acid composition of seed oils from six pomegranate cultivars. J. Sci. Food Agric., 69(2), 253-256. https://doi.org/10.1002/jsfa.2740690216
[32] Karakaplan1, M., & Özcan1, M. (1998). Determination of phenolic acids in pomegranate juices by HPLC-DAD. Eur. J. Sci. Technol., 6, 32-37. ID: 238140966
[33] Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem., 48(10), 4581-4589. https://doi.org/10.1021/jf000404a
[34] Noda, Y., Kaneyuki, T., Mori, A., & Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J. Agric. Food Chem., 50(1), 166-171. doi: 10.1021/jf0108765.
[35] Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem., 96(2), 254-260. https://doi.org/10.1016/j.foodchem.2005.02.033
[36] Ben Nasr, C., Ayed, N., & Metche, M. (1996). Quantitative determination of the polyphenolic content of pomegranate peel. Z. Lebensm. Unters. Forsch., 203(4), 374-378. https://doi.org/10.1007/BF01231077
[37] El-Hadary, A. E., & Taha, M. (2020). Pomegranate peel methanolic-extract improves the shelf-life of edible-oils under accelerated oxidation conditions. Food Sci. Nutr., 8(4), 1798-1811. https://doi.org/10.1002/fsn3.1391
[38] Rashid, R., Masoodi, F. A., Wani, S. M., Manzoor, S., & Gull, A. (2022). Ultrasound assisted extraction of bioactive compounds from pomegranate peel, their nanoencapsulation and application for improvement in shelf life extension of edible oils. Food Chem., 385, 132608. https://doi.org/10.1016/j.foodchem.2022.132608
[39] Kumar, N., Daniloski, D., Pratibha, Neeraj, D'Cunha, N. M., Naumovski, N., & Petkoska, A. T. (2022). Pomegranate peel extract – A natural bioactive addition to novel active edible packaging. Food Res. Int., 156, 111378. https://doi.org/10.1016/j.foodres.2022.111378
[40] Trigo, J. P., Alexandre, E. M. C., Silva, S., Costa, E., Saraiva, J. A., & Pintado, M. (2020). Study of viability of high pressure extract from pomegranate peel to improve carrot juice characteristics. Food & Funct., 11(4), 3410-3419. DOI
[41] More, S. B., Gogate, P. R., & Waghmare, J. S. (2022). Bioactives from pomegranate peel and moringa leaves as natural antioxidants for stability of edible oil blends. Braz. J. Chem. Eng., 39(2), 527-538. https://doi.org/10.1007/s43153-021-00150-1
[42] Javani-Seraji, S., Bazargani-Gilani, B., & Aghajani, N. (2023). Influence of extraction techniques on the efficiency of pomegranate (Punica granatum L.) peel extracts in oxidative stability of edible oils. Food Sci. Nutr., 11(5), 2344-2355. https://doi.org/10.1002/fsn3.3244
[43] Bazargani-Gilani, B., Aliakbarlu, J., & Tajik, H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol., 29, 280-287. https://doi.org/10.1016/j.ifset.2015.04.007
[44] Naveena, B. M., Sen, A. R., Vaithiyanathan, S., Patil, G., & Kondaiah, N. (2010). Antioxidant Potential Of Pomegranate Juice In Cooked Chicken Patties. J. Muscle Foods., 21, 557-569. https://doi.org/10.1111/j.1745-4573.2009.00203.x
[45] Vaithiyanathan, S., Naveena, B. M., Muthukumar, M., Girish, P. S., & Kondaiah, N. (2011). Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4°C).  Meat Sci., 88(3), 409-414. https://doi.org/10.1016/j.meatsci.2011.01.019
[46] Mehdizadeh, T., Tajik, H., & Mojaddar Langroodi, A. (2018). The effect of active and edible starch-chitosan composite film incorporated with thymus kotschyanus essential oil and punica granatum peel extracts on shelf life of meat during storage. Irani. Food Sci. Technol. Res. J., 14(2), 371-382. https://doi.org/10.22067/ifstrj.v0i0.61062
[47] Moghadam, A. K., & Djomeh, Z. E. (2017). Antimicrobial activity of caseinate – based edible film incorporated with pomegranate peel extract on minced meat. J. Food Sci. Technol. (Iran), 14(67), 323-330. ID: 266051163
[48] Saki, J., A, K., & Hosseini, S. M. (2018). Effect of chitosan-gelatin film combined with pomegranate peel extract on quality properties of Belanger's croaker Johnius belangerii stored at 4 ºC. Vet. Res. Biolo. Prod., 31(2), 128-139. https://doi.org/10.22092/vj.2017.116252.1381
[49] Gharedaghi, J., Aliakbarlu, J., & Tajik, H. (2020). Antioxidant potential of apple pomace extract and its efficacy in alginate coating on chemical stability of rainbow trout fillet. J. Food Meas. Charact., 14(1), 135-141. https://doi.org/10.1007/s11694-019-00275-5
[50] H. P. V. Rupasinghe, N. Erkan, and A. Yasmin, "Antioxidant Protection of Eicosapentaenoic Acid and Fish Oil Oxidation by Polyphenolic-Enriched Apple Skin Extract," J. Agric. Food Chem., 58, 1233-1239, 2010. https://doi.org/10.1021/jf903162k
[51] Rupasinghe, H. P. V., Erkan, N., & Yasmin, A. (2010). Antioxidant Protection of Eicosapentaenoic Acid and Fish Oil Oxidation by Polyphenolic-Enriched Apple Skin Extract. J. Agric. Food Chem., 58(2), 1233-1239. https://doi.org/10.1021/jf903162k
[52] Sekhon-Loodu, S., Warnakulasuriya, S. N., Rupasinghe, H. P., & Shahidi, F. (2013). Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chem., 140(1-2), 189-196. https://doi.org/10.1016/j.foodchem.2013.02.040
[53] Barkhordari, P., & Bazargani-Gilani, B. (2021). Effect of apple peel extract and zein coating enriched with ginger essential oil on the shelf life of chicken thigh meat. J. Food Meas. Charact., 15(3), 2727-2742. https://doi.org/10.1007/s11694-021-00863-4
[54] McCann, M. J., Gill, C. I. R., O’ Brien, G., Rao, J. R., McRoberts, W. C., Hughes, P., . . . Rowland, I. R. (2007). Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food Chem. Toxicol., 45(7), 1224-1230. https://doi.org/10.1016/j.fct.2007.01.003
[55] Shin, S.-H., Chang, Y., Lacroix, M., & Han, J. (2017). Control of microbial growth and lipid oxidation on beef product using an apple peel-based edible coating treatment. LWT - Food Sci. Technol., 84, 183-188. https://doi.org/10.1016/j.lwt.2017.05.054
[56] Agourram, A., Ghirardello, D., Rantsiou, K., Zeppa, G., Belviso, S., Romane, A., . . . Giordano, M. (2013). Phenolic Content, Antioxidant Potential, and Antimicrobial Activities of Fruit and Vegetable By-Product Extracts. Int. J. Food Prop., 16(5), 1092-1104. https://doi.org/10.1080/10942912.2011.576446
[57] Belkhir, M., Rebai, O., Dhaouadi, K., Sioud, B., Amri, M., & Fattouch, S. (2013). Antioxidant and Antimicrobial Activities of Tunisian Azarole (Crataegus Azarolus L.) Leaves and Fruit Pulp/Peel Polyphenolic Extracts. Int. J. Food Prop., 16(6), 1380-1393. https://doi.org/10.1080/10942912.2011.586080
[58] Alberto, M. R., Rinsdahl Canavosio, M. A., & Manca de Nadra, M. C. (2006). Antimicrobial effect of polyphenols from apple skins on human bacterial pathogens. Electronic Journal of Biotechnology, 9(3), 205-209. https://doi.org/10.4067/S0717-34582006000300006
[59] Sotiroudis, G., Melliou, E., Sotiroudis, T. G., & Chinou, I. (2010). Chemical analysis, antioxidant and antimicrobial activity of three greek cucumber (Cucumis Sativus) cultivars. J. Food Biochem., 34(s1), 61-78. https://doi.org/10.1111/j.1745-4514.2009.00296.x
[60] Chen, S., Huang, H., & Huang, G. (2019). Extraction, derivatization and antioxidant activity of cucumber polysaccharide. Int. J. Biol. Macromol., 140, 1047-1053. https://doi.org/10.1016/j.ijbiomac.2019.08.203
[61] Mukherjee, P. K., Nema, N. K., Maity, N., & Sarkar, B. K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia, 84, 227-236. https://doi.org/10.1016/j.fitote.2012.10.003
[62] Esparvarini, Z., Bazargani-Gilani, B., Pajohi-Alamoti, M., & Nourian, A. (2022). Gelatin-starch composite coating containing cucumber peel extract and cumin essential oil: Shelf life improvement of a cheese model. Food Sci. Nutr., 10(3), 964-978. https://doi.org/10.1002/fsn3.2730
[63] Fatima, N., Fatmi, N., Shahzada, M., Sharma, S., Kumar, R., Ali, M., & Kumar, A. (2018). Ameliorating effect of Cucumis sativus (cucumbers) against arsenic induced toxicity in mice. Open J. Pathol., 8(3), 78-84 https://doi.org/10.4236/ojpathology.2018.83009 
[64] Agarwal, M., Kumar, A., Gupta, R., & Upadhyaya, S. (2012). Extraction of polyphenol, flavonoid from Emblica officinalis, Citrus limon, Cucumis sativus and evaluation of their antioxidant activity. Orient. J. Chem., 28(2), 993 https://doi.org/10.13005/ojc/280248
[65] El-Ashry, A. A. E., El-Bahr, M. K., & Gabr, A. M. M. (2020). Effect of light quality on Betalain content of red beet (Beta vulgaris L.) cultured in vitro. Egypt. Pharm. J., 19 https://doi.org/10.4103/epj.epj_43_19
[66] Fu, Y., Shi, J., Xie, S.-Y., Zhang, T.-Y., Soladoye, O. P., & Aluko, R. E. (2020). Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem., 68(42), 11595-11611. https://doi.org/10.1021/acs.jafc.0c04241.
[67] Zia, P., Sunita, M., & Sneha, S. (2021). Extraction of Natural Colour from Beet Root (Beta vulgaris) its Phytochemical Analysis and Antibacterial Activity. EAS J. Nutr. Food Sci., 3, 80-85. https://doi.org/10.36349/easjnfs.2021.v03i04.002
[68] Nwankwo, C. C., & T, D. B. (2021). Antimicrobial and antihelminthic activities of beetroot plant. GSC Biol. Pharm. Sci., 15(3), 093-101.  https://doi.org/10.30574/gscbps.2021.15.3.0123
[69] Flores-Mancha, M. A., Ruíz-Gutiérrez, M. G., Sánchez-Vega, R., Santellano-Estrada, E., & Chávez-Martínez, A. (2020). Characterization of Beet Root Extract (Beta vulgaris) Encapsulated with Maltodextrin and Inulin. Mol., 25(23). https://doi.org/10.3390/molecules25235498
[70] Guo, Z., Ge, X., Li, W., Yang, L., Han, L., & Yu, Q.-l. (2021). Active-intelligent film based on pectin from watermelon peel containing beetroot extract to monitor the freshness of packaged chilled beef. Food Hydrocoll., 119, 106751. https://doi.org/10.1016/j.foodhyd.2021.106751
[71] Šeremet, D., Durgo, K., Jokić, S., Huđek, A., Vojvodić Cebin, A., Mandura, A., . . . Komes, D. (2020). Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity In Vitro. Sustainability, 12(11). 4539, 2020. https://doi.org/10.3390/su12114539
[72] Salamatullah, A. M., Hayat, K., Alkaltham, M. S., Ahmed, M. A., Arzoo, S., Husain, F. M., . . . Al-Harbi, L. N. (2021). Bioactive and Antimicrobial Properties of Oven-Dried Beetroot (Pulp and Peel) Using Different Solvents. Processes, 9(4). 588. https://doi.org/10.3390/pr9040588
[73] Yavuzer, E., Özogul, F., & Özogul, Y. (2020). Impact of icing with potato, sweet potato, sugar beet, and red beet peel extract on the sensory, chemical, and microbiological changes of rainbow trout (Oncorhynchus mykiss) fillets stored at (3 ± 1 °C). Aquac. Int., 28(1), 187-197. https://doi.org/10.1007/s10499-019-00454-7
[74] Maqbool, H., Safeena, M. P., Abubacker, Z., Azhar, M., & Kumar, S. (2021). Effect of beetroot peel dip treatment on the quality preservation of Deccan mahseer (Tor khudree) steaks during frozen storage (−18 °C). LWT - Food Sci. Technol., 151, 112222. https://doi.org/10.1016/j.lwt.2021.112222
[75] Fereydouni, N., Movaffagh, J., Amiri, N., Darroudi, S., Gholoobi, A., Goodarzi, A., . . . Darroudi, M. (2021). Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Sci. Rep., 11(1), 1902. https://doi.org/10.1038/s41598-020-73678-w
[76] Wei, Y., Zhan, X., Dai, L., Zhang, L., Mao, L., Yuan, F., . . . Gao, Y. (2021). Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method. LWT - Food Sci. Technol., 139, 110605. https://doi.org/10.1016/j.lwt.2020.110605
[77] Mattice, K. D., & Marangoni, A. G. (2021). Physical properties of zein networks treated with microbial transglutaminase. Food Chem., 338, 128010. https://doi.org/10.1016/j.foodchem.2020.128010
[78] Giteru, S. G., Ali, M. A., & Oey, I .(2021) .Recent progress in understanding fundamental interactions and applications of zein. Food Hydrocoll., 120, 106948. https://doi.org/10.1016/j.foodhyd.2021.106948
[79] Zolfaghari, A., Bazargani-Gilani, B., & Aghajani, N. (2023). Edible film based on corn zein containing dill extract and essential oil/β-cyclodextrin inclusion complex: Shelf life enhancement of common carp fillet. Food Sci. Nutr., 11(7), 4275-4288. https://doi.org/10.1002/fsn3.3353
[80] Motalebinejad, H., Bazargani-Gilani, B., & Pajohi-Alamoti, M. (2023). Corn Zein edible film containing Sumac fruit extract and encapsulated Thymus daenensis Celak essential oil to improving the shelf life of chicken fillet. J. Food Meas. Charact., 17(6), 5989-6002. https://doi.org/10.1007/s11694-023-02099-w
[81] Rajaei Lak, H., Bazargani-Gilani, B., & Karami, M. (2024). Different coating application methods: Zein-based edible coating containing Heracleum persicum essential oil for shelf-life enhancement of whey-less cheese. Food Sci. & Nutr., 12, 5990-6010. https://doi.org/10.1002/fsn3.4269
 
[82] Rather, J. A., Akhter, N., Ashraf, Q. S., Mir, S. A., Makroo, H. A., Majid, D., . . . Dar, B. (2022). A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag. Shelf Life., 34, 100945. https://doi.org/10.1016/j.fpsl.2022.100945
[83] Lu, Y., Luo, Q., Chu, Y., Tao, N., Deng, S., Wang, L., & Li, L. (2022). Application of gelatin in food packaging: A review. Polym., 14(3), 436. https://doi.org/10.3390/polym14030436
[84] Samatra, M. Y., Noor, N. Q. I. M., Razali, U. H. M., Bakar, J., & Shaarani, S. M. (2022). Bovidae‐based gelatin: Extractions method, physicochemical and functional properties, applications, and future trends. Compr. Rev. Food Sci. Food Saf., 21, 3153-3176. https://doi.org/10.1111/1541-4337.12967
[85] Zhang, T., Sun, R., Ding, M., Li, L., Tao, N., Wang, X., & Zhong, J.) 2020). Commercial cold-water fish skin gelatin and bovine bone gelatin: Structural, functional, and emulsion stability differences. LWT - Food Sci. Technol., 125, 109207. https://doi.org/10.1016/j.lwt.2020.109207
[86] Nurdiani, R., Ma’rifah, R. D., Busyro, I. K., Jaziri, A. A., Prihanto, A. A., Firdaus, M., . . . Huda, N. (2022). Physical and functional properties of fish gelatin-based film incorporated with mangrove extracts. PeerJ, 10, e13062.  https://doi.org/10.7717/peerj.13062
 [87] Badway, H. M., El-Moniem, A., Somia, M., Soliman, A., & Rabie, M. (2019). Physicochemical properties of gelatin extracted from Nile tilapia (Oreochromis niloticus) and Nile perch (Lates niloticus) fish skins. Zagazig J. Agric. Res., 46(5), 1529-1537. https://doi.org/10.21608/zjar.2019.48170
[88] Lv, L.-C., Huang, Q.-Y., Ding, W., Xiao, X.-H., Zhang, H.-Y., & Xiong, L.-X. (2019). Fish gelatin: The novel potential applications. J. Funct. Foods, 63, 103581. https://doi.org/10.1016/j.jff.2019.103581
 [89] Abdelhedi, O., Salem, A., Nasri, R., Nasri, M., & Jridi, M. (2022). Food applications of bioactive marine gelatin films. Curr. Opin. Food Sci., 43, 206-215. https://doi.org/10.1016/j.cofs.2021.12.005
[90] Liu, Y., Kai, Y., & Yang, H. (2023). Biodegradable fish gelatin/chitosan-based active films alter chill-stored golden pomfret (Trachinotus blochii) metabolites mainly through modulating four metabolic pathways. Food Packag. Shelf Life, 36, 101046. https://doi.org/10.1016/j.fpsl.2023.101046
[91] Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. d. J., Soares, N. d. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocoll., 35, 287-296. https://doi.org/10.1016/j.foodhyd.2013.06.005
 [92] Zhang, X., Chen, X., Dai, J., Cui, H., & Lin, L. (2024). Edible films of pectin extracted from dragon fruit peel: Effects of boiling water treatment on pectin and film properties. Food Hydrocoll., 147, 109324. https://doi.org/10.1016/j.foodhyd.2023.109324
 [93] Jiang, Y., Xu, Y., Li, F., Li, D., & Huang, Q. (2020). Pectin extracted from persimmon peel: A physicochemical characterization and emulsifying properties evaluation. Food Hydrocoll., 101, 105561. https://doi.org/10.1016/j.foodhyd.2019.105561
[94] Bagabaldo, P. A. A., Atienza, L. M., Castillo-Israel, K. A. T., Estacio, M. A. C., Gaban, P. J. V., Maniwang, J. R. C., . . . Cena-Navarro, R. B. (2022). ‘Saba’ banana (Musa acuminata x balbisiana BBB Group) peel pectin supplementation improves biomarkers of obesity and associated blood lipid disorders in obese hypercholesterolemic mice. Curr. Res. Food Sci., 5, 251-260. https://doi.org/10.1016/j.crfs.2022.01.016
[95] Medeiros Silva, V. D., Coutinho Macedo, M. C., Rodrigues, C. G., Neris dos Santos, A., de Freitas e Loyola, A. C., & Fante, C. A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Biosci., 38, 100750. https://doi.org/10.1016/j.fbio.2020.100750
[96] Jridi, M., Abdelhedi, O., Salem, A., Kechaou, H., Nasri, M., & Menchari, Y. (2020). Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocoll., 103, 105688. https://doi.org/10.1016/j.foodhyd.2020.105688
[97] Ramos-Alvarado, M., Cadenas-González, M., Bolio-López, G., Leo-Avelino, G., Maciel-Cerda, A., Castañeda-Castañeda, C., & Ramos-Valencia, J. (2020). Biofilms based on pectin from orange peel (Citrus sinensis): Physical, chemical and structural characterization. Agroind. Sci., 10, 273-278. https://doi.org/10.17268/agroind.sci.2020.03.08
[98] Zioga, M., Tsouko, E., Maina, S., Koutinas, A., Mandala, I., & Evageliou, V. (2022). Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies. Food Hydrocoll., 132, 107887. https://doi.org/10.1016/j.foodhyd.2022.107887
 [99] Huang, J., Hu, Z., Hu, L., Li, G., Yao, Q., & Hu, Y. (2021). Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends Food Sci. Technol., 118, 167-178. https://doi.org/10.1016/j.tifs.2021.09.026
[100] Ghanbar Soleiman Abadi, F., Bazargani-Gilani, B., Emamifar, A., & Nourian, A. (2024). Beet root peel extract as a natural cost-effective ph indicator and food preservative in edible film: shelf life improvement of cold-stored trout fillet. Food Sci Nutri., 12, 10561-10575. https://doi.org/10.1002/fsn3.4605