[1] Bhattacharjee, S., Mohanty, P., Sahu, J.K., & Sahu, J.N. (2024). A critical review on drying of food materials: Recent progress and key challenges. International Communications in Heat and Mass Transfer, 158, 107863. https://doi.org/10.1016/j.icheatmasstransfer.2024.107863.
[2] Wang, J.F., Brown, C., & Cleland, D.J. (2018). Heat pump heat recovery options for food industry dryers. International Journal of Refrigeration, 86, 48–55. https://doi.org/10.1016/j.ijrefrig.2017.11.028.
[3] Abedi, E. & Ghafori, H. (2024). Simulation of fluidized bed dryer using Computational Fluid Dynamics (CFD). Journal of Research in Mechanics of Agricultural Machinery, 13(4), 13-22. doi: 10.22034/jrmam.2024.14697.696. [In persian]
[4] Benavides, A, Cubillos, A., & Gómez, A. (2021). Spray drying experiments and CFD simulation of guava juice formulation. Drying Technology, 39, 450–465. https://doi.org/10.1080/07373937.2019.1708382.
[5] Paes, T., Maria, C., Franco, L., & Leonel, M. (2019). Gelatinized sweet potato starches obtained at different preheating temperatures in a spray dryer. International Journal of Biological Macromolecules, 149, 1339-1346. https://doi.org/10.1016/j.ijbiomac.2019.11.105.
[6] Patel, R.P., Patel, M.P., & Suthar, A.M. ( 2009). Spray drying technology: An overview. Indian Journal of Science and Technology, 2(10), 44-47. https://dx.doi.org/10.17485/ijst/2009/v2i10.3.
[7] Nandiyanto, A.B.D, & Okuyama, K. (2011). Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to sub micrometer size ranges. Advanced Powder Technology; 22(1), 1-19. https://doi.org/10.1016/j.apt.2010.09.011
[8] Cal, K., & Sollohub, K. (2010). Spray drying technique. I: Hardware and process parameters. Journal of Pharmaceutical Sciences, 99(2), 575-586. https://doi.org/10.1002/jps.21886
[9] Barbosa-Cánovas G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2006). Food Powders: Physical Properties, Processing, and Functionality. Springer Science & Business Media.
[10] Anandharamakrishnan, C., & Ishwarya, S. P. (2015). Spray Drying Techniques for Food Ingredient Encapsulation. John Wiley & Sons, Ltd.
[11] Gutierrez Suarez, J.A., Galeano Uruena, C.H., & Gomez Mejia, A. (2025). Parametric CFD Study of Spray Drying Chamber Geometry: Part I—Effects on Airflow Dynamics. Chem. Engineering, 9(5), 1-26. https://doi.org/10.3390/chemengineering9010005.
[12] Demissie P., Hayelom, M., Kassaye A., Hailesilassie A., Gebrehiwot M., & Vanierschot, M. (2019). Design , development and CFD modeling of indirect solar food dryer. Energy Procedia, 158, 1128–1134. https://doi.org/10.1016/j.egypro.2019.01.278.[13] Islam, M., Islam, I., Tusar, M., & Hamza, A.N. (2019). Effect of cover design on moisture removal rate of a cabinet type Effect of cover design on moisture removal rate of cabinet type solar food drying application. Energy Procedia. 160, 769–776. http://dx.doi.org/10.1016/j.egypro.2019.02.181.
[14] Filková, I., Huang, L.X., & Mujumdar, A.S. (2015). Industrial spray drying systems, in: Mujumdar, A.S. (Ed.). Handbook of industrial drying, (pp. 191-226). CRC Press, Boca Raton.
[15] Xiao, J., Yang, S., George, O.A., Putranto, A., Wu, W.D., & Chen, X.D. (2019). Numerical Simulation of Mono-Disperse Droplet Spray Dryer: Coupling Distinctively Different Sized Chambers. Chemical Engineering Science., 200, 12-26. http://dx.doi.org/10.1016/j.ces.2019.01.030.
[16] Buchholz, M., Haus, J., Pietsch-Braune, S., Kleine J¨ager, F., Heinrich, S. (2022). CFD-aided population balance modeling of a spray drying process. Adv. Powder Technol. 33. https://doi.org/10.1016/j.apt.2022.103636.
[17] Hernandez, B., Martín, M., Gupta, P. (2021). Numerical study of airflow regimes and instabilities produced by the swirl generation chamber in counter-current spray dryers. Chem. Eng. Res. Des. 176, 89–101. https://doi.org/10.1016/j.cherd.2021.09.024.
[18] Moradi Maryamnegari, S., Ashrafizadeh, A., Baake, E., Guglielmi, M. (2022). Effects of thermal boundary conditions on the performance of spray dryers. J. Food Eng. 338. https://doi.org/10.1016/j.jfoodeng.2022.111250.
[19] Hernandez, B., Pinto, M.A., Martín, M. (2022). Generation of a surrogate compartment model for counter-current spray dryer. Fluxes and momentum modeling. Comput. Chem. Eng. 159. https://doi.org/10.1016/j.compchemeng.2022.107664.
[20] Kuriakose, R, & Anandharamakrishnan, C. (2010). Computational fluid dynamics (CFD) applications in spray drying of food products. Trends Food Sci Technol., 21, 383–398. https://doi.org/10.1016/j.tifs.2010.04.009.
[21] Lo, S. (2005). Application of Computational Fluid Dynamics to Spray Drying,. Dairy Science and Technology, 85, 353-359. https://doi.org/10.1051/lait:2005024.
[22] Jamaleddine T.J., & Ray M.B. (2010). Application of computational fluid dynamics for simulation of drying processes: a review. Dry Technology, 28, 120–154. http://dx.doi.org/10.1080/07373930903517458.
[23] Anandharamakrishnan, C. (2007). Computational fluid dynamics in food processing, 1st edn. Springer, London.
[24] Roustapour, O.R., Hosseinalipour, M., Gazor, H.R., Salehi. A. (2024). Computational fluid dynamics simulation of air flow in a spray dryer containing wall air pressure nozzle. Agricultural Engineering International: CIGR Journal, 26(3), 134-147.
[25] Sefidan, l.M., Sellier, M., Hewett, J.N., Abdollahi, A., Willmott, G.R., Becker. S.M. (2022). Numerical model to study the statistics of whole milk spray drying.
Powder Technology,
411(1-2), 117923. http://dx.doi.org/10.1016/j.powtec.2022.117923.
[26] Coimbra, J.C., Lopes, L.C., Cotrim, W.S., Prata. D.M. (2024). CFD modeling of spray drying of fresh whey: Influence of inlet air temperature on drying, fluid dynamics, and performance indicators. Digital Chemical Engineering, 12, 100178. http://dx.doi.org/10.1016/j.dche.2024.100178.
[27] Keogh, K., Murray, C., Kelly, J., & O’Kennedy, B. (2004). Effect of the particle size of spray-dried milk powder on some properties of chocolate. Dairy Science & Technology, 84(4), 375-384. http://dx.doi.org/10.1051/lait:2004013.
[28] Coimbra, J.C., Martins, M.A., Oliveira, P.S., Minim, L.A. (2021). The potential use of a gyroid structure to represent monolithic matrices for bioseparation purposes : fluid dynamics and mass transfer analysis via CFD. Sep. Purif. Technol. 254, 117594. https://doi.org/10.1016/j.seppur.2020.117594.
[29] Luo, J., Chen, L., Min, T., Shan, F., Kang, Q., Tao, W. (2020). Macroscopic transport properties of Gyroid structures based on pore-scale studies : permeability, diffusivity and thermal conductivity. Int. J. Heat. Mass Transf. 146, 118837. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118837.
[30] Rogers, S. (2011). Developing and utilizing a mini food powder producion facility to produce industrially relevant particles for functionality testing. Ph.D thesis, Monash University, Australia.
[31] George, O.A., Chen, X.D., Xiao, J., Woo, M., & Che, L. (2015). An effective rate approach to modeling single-stage spray drying. AIChE J., 61, 4140–4151. http://dx.doi.org/10.1002/aic.14940.