[1] Chew, S.C., & Nyam, K.L. (2020). Refining of edible oils, in: Galanakis C.M. (Ed.), Lipids and Edible Oils. Academic Press: Cambridge, MA, USA, pp. 213–241. https://doi.org/10.1016/B978-0-12-817105-9.00006-9.
[2] Yang, C., Wang, C., Wang, M., Qin, X., Hao, G., Kang, M., Hu, X., Cheng, Y., & Shen, J. (2021). A novel deodorization method of edible oil by using ethanol steam at low temperature. J. Food Sci., 86, 394–403. https://doi.org/10.1111/1750-3841.15578.
[3] Zhang X., Ma Y., Qin X.L., Hollmann F., & Wang Y. (2022). A new deacidification strategy for crude vegetable oil: Removal of free fatty acids via photobiocatalytic decarboxylation. Authorea Preprints. https://doi.org/10.22541/au.164736455.58070076/v1.
[4] Abd El-Salam, A.S.M., Doheim, M.A., Sitohy, M.Z., & Ramadan, M.F. (2011). Deacidification of high-acid olive oil. J. Food Process Technol. S5-001. http://dx.doi.org/10.4172/2157-7110.S5-001.
[5] Ştefan, N.G., Iancu, P., Pleșu, V., Călinescu, I., & Ignat, N.D. (2021). Highly efficient deacidification process for camelina sativa crude oil by molecular distillation. Sustainability. 13, e2818. https://doi.org/10.3390/su13052818.
[6] Changwatchai, T., Nakajima, M., Felipe, L.D.O., & Neves, M.A. (2022). Separation of free fatty acid and triglycerides by molecular distillation–experimental and simulation approaches. Processes 10. e2053 https://doi.org/10.3390/pr10102053.
[7] Nazim, O., Ciftci, D., & Jenab, E. (2012). Potential Applications of Green Technologies in Olive Oil Industry, in: Yasin, M., (Ed.), Olive Oil – Constituents, Quality, Health Properties and Bioconversions. InTech, Croatia, pp. 293-308.
[8] Codex Standard 210-1999, 1999. Standard for Named Vegetable Oils, Codex alimentarius Commission.
[9] Codex Standard CXS 33-1981, 2021. Standard for olive oils and olive pomace oils, Codex alimentarius Commission.
[10] Li, Y., Zhuang, X., Wu, X., Qiu, C., & Wang, Y. (2022). Sustainable valorization of Litsea cubeba (Lour.) pers. residue as the new lauric oil source using alternative green extraction and refining methods. Foods, 11, e2047. https://doi.org/10.3390/foods11142047.
[11] Gao, R., Sun, S., Zhou, Y., Chen, X., Zhang, H., & Yao, N. (2022). Low-cost liquid lipase selective deacidification of corn oil with high triglyceride yield. Process Biochemistry, 122, 137–145. https://doi.org/10.1016/j.procbio.2022.10.006.
[12] Vaisali, C., Charanyaa, S., Belur, P.D., & Regupathi, I. (2014). Refining of edible oils: a critical appraisal of current and potential technologies. Int. J. Food Sci. Technol., 50, 13–23. https://doi.org/10.1111/ijfs.12657.
[13] Peri, C. (2014). The olive oil refining process, in: Peri, C. (Ed.), The Extra-Virgin Olive Oil Handbook. John Wiley & Sons Ltd., NJ, USA, pp. 201–210. https://doi.org/10.1002/9781118460412.ch17.
[14] Li, S., Deng, Y., Peng, J., Liu, G., Zhao, Z., Wei, Z., Zhang, Y., Tang, X., Li, P., & Hou, L. (2022). Design of functional glycerol-based deep eutectic solvents as reaction media for enzymatic deacidification of high-acid rice bran oil. Biochemical Engineering J., 177, e108257. https://doi.org/10.1016/j.bej.2021.108257.
[15] Dunford, N.T. (2022). Enzyme-aided oil and oilseed processing: opportunities and challenges. Curr. Opin. Food Science, 48, e100943. https://doi.org/10.1016/j.cofs.2022.100943.
[16] Wang, Z., Ma, X., Zheng, C., Wang, W., & Liu, C. (2023). Effect of adsorption deacidification on the quality of peony seed oil. Foods, 12 (2), 240. https://doi.org/10.3390/foods12020240.
[17] Ramirez, J.C., Montañez, M.A., Orjuela, A., Narváez, P.C., & Katryniok, B. (2022). Deacidification of used cooking oils by solvent extraction under lab scale and in a falling film contactor. Chem. Eng. Process. Process Intensification, 181, e109089. https://doi.org/10.1016/j.cep.2022.109089.
[18] Aniobi, C.C., Esan, T.O., Ojo, O.I., & Ajayi, M.G. (2023). Analyzing the bleaching effects of activated carbon produced from natural coal on soyabean oil and Goya olive oil. GSC Biological Pharmaceutical Sciences, 23, 217–222. https://doi.org/10.30574/gscbps.2023.23.3.0242.
[19] Shihab, J.M., Rashid, K.T., & Toma, M.A. (2022). A review on membrane technology application for vegetable oil purification processes. Int. J. Food Eng., 18, 655–677. https://doi.org/10.1515/ijfe-2022-0058.
[20] Mhadmhan, S., Yoosuk, B., Chareonteraboon, B., Janetaisong, P., Pitakjakpipop, P., Henpraserttae, S., & Udomsap, P. (2023). Elimination of free fatty acid from palm oil by adsorption process using a strong base anion exchange resin. Sep. Purif. Technol. 310, e123211. https://doi.org/10.1016/j.seppur.2023.123211.
[21] Hadiah, F., Rainaldi, A.M., Sari, M.I.M., Rico, M., Kusumawardani, D.S., Gayatri, R., Agustina, T.E., Arita, S., & Sari, T.I. (2022). Deacidification of palm oil mill effluent using anion exchange resin. Mater. Today Proc. 63, S50–S54. https://doi.org/10.1016/j.matpr.2022.01.041.
[22] Özdikicierler, O., Yemişçioğlu, F., & Saygın Gümüşkesen, A. (2015). Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. Eur. Food Res. Technol., 242, 805–813. https://doi.org/10.1007/s00217-015-2587-7.
[23] Zanetti, F., Alberghini, B., Jeromela, A.M., Grahovac, N., Rajković, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. a review. Agronomy Sustainable Development, 41. https://doi.org/10.1007/s13593-020-00663-y.
[24] Agarwal, A., Prakash, O., & Bala, M. (2021). Camelina sativa, a short gestation oilseed crop with biofuel potential: Opportunities for Indian scenario. Oil Crop Science, 6, 114–121. https://doi.org/10.1016/j.ocsci.2021.07.001.
[25] Seifollahi, F., Eikani, M.H., & Khandan, N. (2024b). Cold-pressed camelina oil deacidification using short path molecular distillation : An optimization study and comparison with conventional techniques. Food and Bioprod. Process., 147, 92–104. https://doi.org/10.1016/j.fbp.2024.06.010.
[26] Technavio (2022). Camelina oil market 2023-2027. Toronto, Canada. https://www.technavio.com/report/camelina-oil-market-industry-analysis (accessed 24 April 2024).
[27] Tariq, M., Khan, M.A., Muhammad, W., & Ahmad, S. (2023). Fiber crops in changing climate, in: Ahmed, M. (Ed), Global Agricultural Production: Resilience to Climate Change. Springer, 267-282. https://doi.org/10.1007/978-3-031-14973-3_9.
[28] Shukla, V.K.S., Dutta, P.C., & Artz, W.E. (2002). Camelina oil and its unusual cholesterol content. J. Am. Oil Chem. Soc., 79, 965–969. https://doi.org/10.1007/s11746-002-0588-1.
[29] Popa, A.L., Jurcoane, S., & Dumitriu, B. (2017). Camelina sativa oil-a review. Scientific Bulletin Series F. Biotechnologies 21.
[30] Weiss, R.M., Zanetti, F., Alberghini, B., Puttick, D., Vankosky, M.A., Monti, A., & Eynck, C. (2024). Bioclimatic analysis of potential worldwide production of spring-type camelina [Camelina sativa (L.) Crantz] seeded in the spring. GCB Bioenergy, 16, e13126. https://doi.org/10.1111/gcbb.13126.
[31] Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops Products, 94, 690–710. https://doi.org/10.1016/j.indcrop.2016.09.034.
[32] FAO (2019). Oilcrops complex: Policy Changes and Industry Measures - Annual Compendium - 2018. Rome, Italy.
[33] Z. Piravi-vanak et al., “Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran.” J. Molecular Liquids, 345, 2022, doi: 10.1016/j.molliq.2021.117043.
[34] Piravi-Vanak, Z., Ghasemi, J.B., Ghavami, M., Ezzatpanah, H., & Zolfonoun, E. (2012). The influence of growing region on fatty acids and sterol composition of Iranian olive oils by unsupervised clustering methods. J. Am. Oil Chem.’ Soc., 89, 371–378. https://doi.org/10.1007/s11746-011-1922-9.
[35] Rodrigues, N., Casal, S., Pinho, T., Cruz, R., Peres, A.M., Baptista, P., & Pereira, J.A. (2021). Fatty acid composition from olive oils of Portuguese centenarian trees is highly dependent on olive cultivar and crop year. Foods, 10, 1–13. https://doi.org/10.3390/foods10030496.
[36] Seifollahi, F., Eikani, M.H., & Khandan, N. (2024a). Optimization of operating conditions for lampante olive oil deacidification by short path molecular distillation: Waste valorization approach. J. Clean. Prod., 454, e142304. https://doi.org/10.1016/j.jclepro.2024.142304.
[37] Jafari, M., Kadivar, M., & Keramat, J. (2009). Detection of adulteration in Iranian olive oils using instrumental (GC, NMR, DSC) methods. JAOCS, J. Am. Oil Chem. Soc., 86, 103–110. https://doi.org/10.1007/s11746-008-1333-8.
[38] Khwaldia, K., Attour, N., Matthes, J., Beck, L., & Schmid, M. (2022). Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 21, 1218–1253. https://doi.org/10.1111/1541-4337.12882.
[39] Kaniewski, D., Marriner, N., Morhange, C., Khater, C., Terral, J.F., Besnard, G., Otto, T., Luce, F., Couillebault, Q., Tsitsou, L., Pourkerman, M., & Cheddadi, R. (2023). Climate change threatens olive oil production in the Levant, Nature Plants. https://doi.org/10.1038/s41477-022-01339-z.
[40] Mohammadi, P., Kavoosi-Kalashami, M., & Zanganeh, M. (2019). Olive production in Northern Iran: Physical and comparative advantages analysis. Ciência Rural, 49, e20190322. https://doi.org/10.1590/0103-8478cr20190322.
[41] Mahrous, E.A., & Farag, M.A. (2021). Trends and applications of molecular distillation in pharmaceutical and food industries. Sep. Purif. Rev., 51, 300–317. https://doi.org/10.1080/15422119.2021.1924205.
[42] Idárraga-Vélez, Á.M., Orozco, G.A., & Gil-Chaves, I.D. (2023). A systematic review of mathematical modeling for molecular distillation technologies. Chem. Eng. Process. Process Intensification, 184, e109289. https://doi.org/10.1016/j.cep.2023.109289.
[43] Ketenoglu, O., & Tekin, A. (2015). Applications of molecular distillation technique in food products. Italian J. of Food Sci., 27, 277–281. https://doi.org/10.14674/1120-1770/ijfs.v269.
[44] Erdogdu, F. (2023). Mathematical modeling of food thermal processing: current and future challenges. Current Opinion in Food Sci., 51, e101042. https://doi.org/https://doi.org/10.1016/j.cofs.2023.101042.
[45] Jiang, S.T., Shao, P., Pan, L.J., & Zhao, Y.Y. (2006). Molecular Distillation for recovering Tocopherol and Fatty Acid Methyl Esters from Rapeseed Oil Deodoriser Distillate. Biosystems Eng., 93, 383–391. https://doi.org/10.1016/j.biosystemseng.2006.01.008.
[46] Altuntas, A.H., Ketenoglu, O., Cetinbas, S., Erdogdu, F., & Tekin, A. (2018). Deacidification of crude hazelnut oil using molecular distillation--multiobjective optimization for free fatty acids and tocopherol. Eur. J. Lipid Sci. Technol., 120, e1700369. https://doi.org/10.1002/ejlt.201700369.
[47] da Silva Filho, V.F., Alves, J.L.F., Reus, G.F., Machado, R.A.F., Marangoni, C., & Bolzan, A. (2018). Experimental evaluation of the separation of aromatic compounds using falling film distillation on a pilot scale. Chem. Eng. Processing - Process Intensification, 130, 296–308. https://doi.org/10.1016/j.cep.2018.06.026.
[48] UiC GmbH, & Alzenau, G. (2022). Pioneer in Short Path Distillation. https://www.uic-gmbh.de/en/ (accessed 29.12.24).
[49] Lutišan, J., & Cvengroš, J. (1995b). Effect of Inert Gas Pressure on the Molecular Distillation Process. Sep. Sci. & Tech., 30, 3375–3389. https://doi.org/10.1080/01496399508013152.
[50] Embree, N.D. (1941). The separation of natural components of fats and oils by molecular distillation. Chem. Rev., 29, 317–332. https://doi.org/10.1021/cr60093a008.
[51] Sagili, S.U.K.R., Addo, P.W., Addo P.W., Gladu-Gallant F., Bilodeau S.E., MacPherson S., Paris M., Lefsrud M., & Orsat V. (2023). Optimization of wiped-film short path molecular distillation for recovery of cannabinoids from cannabis oil using response surface methodology. Ind. Crops Prod., 195, e116442. https://doi.org/10.1016/j.indcrop.2023.116442.
[52] Lutišan, J., & Cvengroš, J. (1995a). Mean free path of molecules on molecular distillation. Chemical Engineering J. Biochemical Eng. J., 56, 39–50. https://doi.org/10.1016/0923-0467(94)02857-7.
[53] Ketenoluglu, O., Erdolugdu, F., & Tekin, A. (2018). Multi-objective optimization of molecular distillation conditions for oleic acid from a rich-in-fatty acid model mixture. J. Oleo Sci., 67, 21–28. https://doi.org/10.5650/jos.ess17134.
[54] Ketenoglu, O., Sahin Ozkan, K., Yorulmaz, A., & Tekin, A. (2018). Molecular distillation of olive pomace oil ─ Multiobjective optimization for tocopherol and squalene. LWT, 91, 198–202. https://doi.org/10.1016/j.lwt.2018.01.051.
[55] Martins, P.F., Batistella, C.B., Maciel-Filho, R., & Wolf-Maciel, M.R. (2005). Comparison of two different strategies for tocopherols enrichment using a molecular distillation process. Industrial & Eng. Chem. Research, 45, 753–758. https://doi.org/10.1021/ie050614i.
[56] Nagao, T., Hirota, Y., Watanabe, Y., Kobayashi, T., Kishimoto, N., Fujita, T., Kitano, M., Shimada, Y., 2004. Recovery of sterols as fatty acid steryl esters from waste material after purification of tocopherols. Lipids 39, 789–794. https://doi.org/10.1007/s11745-004-1297-0.
[57] Hu, H., Wang, L., Huang, J., & Wu, S. (2012). Pilot-plant molecular distillation of seal oil fatty acids. Adv. Materials Research, 550–553: 1703–1708. https://doi.org/10.4028/www.scientific.net/AMR.550-553.1703.
[58] Babeanu, N., Nita, S., Popa, O., & Marin, D.I. (2016). Squalene recovery from amaranth oil by short path distillation. J. Biotechnology S53. https://doi.org/10.1016/j.jbiotec.2016.05.200.
[59] Komesu, A., Wolf Maciel, M.R., & Maciel Filho, R. (2017). Central composite experimental design applied to evaluate the lactic acid concentration by short path evaporation. Chem. Eng. Process. Process Intensif. 117, 89–94. https://doi.org/10.1016/j.cep.2017.03.020.
[60] Puel, F., Briançon, S., & Fessi, H. (2006). Industrial technologies and scale-up, in: Benita, S, (Ed.), Microencapsulation Methods and Industrial Applications. Taylor & Francis, New York, pp. 152–167.
[61] Pehlivan, H., & Özdemir, M. (2012). Experimental and theoretical investigations of falling film evaporation. Heat & Mass Trans, 48, 1071–1079. https://doi.org/10.1007/s00231-011-0962-x.
[62] Xubin Z., Chunjian X., & Ming Z. (2005). Modeling of falling film molecular distillator. Sep. Sci. & Tech., 40, 1371–1386. https://doi.org/10.1081/SS-200053027.
[63] Lutišan, J., Cvengroš, J., & Micov, M. (2002). Heat and mass transfer in the evaporating film of a molecular evaporator. Chem. Eng. J., 85, 225–234. https://doi.org/10.1016/S1385-8947(01)00165-6.
[64] Bose, A., & Palmer, H.J. (1984). Influence of heat and mass transfer resistances on the separation efficiency in molecular distillations. Ind. & Eng. Chem. Fundamen., 23, 459–465. https://doi.org/10.1021/i100016a014.
[65] Shao, P., Jiang, S.T., & Ying, Y.J. (2007). Optimization of molecular distillation for recovery of tocopherol from rapeseed oil deodorizer distillate using response surface and artificial neural network models. Food Bioprod. Process., 85, 85–92. https://doi.org/10.1205/fbp06048.
[66] Saliu, F., Longhin, E., Salanti, A., Degano, I., & Della Pergola, R. (2016). Sphingoid esters from the molecular distillation of squid oil: A preliminary bioactivity determination. Food Chem., 201, 23–28. https://doi.org/10.1016/j.foodchem.2016.01.056.
[67] Martinello, M., Hecker, G., & Carmen Pramparo, M. del (2007). Grape seed oil deacidification by molecular distillation: Analysis of operative variables influence using the RSM. J. Food Eng., 81, 60–64. https://doi.org/10.1016/j.jfoodeng.2006.10.012.
[68] Holland, L., & Srechelmacher, W. (1974). Vacuum Manual, Springer, London.
[69] Ceriani, R., & Meirelles, A.J.A. (2004). Predicting vapor-liquid equilibria of fatty systems. Fluid Phase Equilibria, 215, 227–236. https://doi.org/10.1016/j.fluid.2003.08.011.