[1] Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E.A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J. Sci. Food Agric., 90, 2541-2547. https://doi.org/10.1002/jsfa.4158
[2] Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeón, M.E., & Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14, 431-445. https://doi.org/10.1111/1541-4337.12135
[3] Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa—An Indian perspective. Industrial Crops and Products, 23, 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
[4] Nowak, V., Du, J., & Charrondière, U.R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem., 193, 47-54. https://doi.org/10.1016/j.foodchem.2015.02.111
[5] Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M., & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem., 115, 994-998. https://doi.org/10.1016/j.foodchem.2009.01.037
[6] Złotek, U., Gawlik-Dziki, U., Dziki, D., Świeca, M., Nowak, R., & Martinez, E. (2019). Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. Journal of Chemistry, 2019, 7125169. https://doi.org/10.1155/2019/7125169
[7] Barakat, H., Al-Qabba, M.M., Algonaiman, R., Radhi, K.S., Almutairi, A.S., Al Zhrani, M.M., & Mohamed, A. (2024). Impact of sprouting process on the protein quality of yellow and red quinoa (Chenopodium quinoa). Molecules, 29, 404. https://doi.org/10.3390/molecules29020404
[8] Lan, Y., Wang, X., Wang, L., Zhang, W., Song, Y., Zhao, S., Yang, X., & Liu, X. (2024). Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination. Food Chem., 445, 138693. https://doi.org/10.1016/j.foodchem.2024.138693
[9] Khodadadi, M., & Masoumi, A. (2025). Recent drying technologies used for drying poultry litter (principles, advantages and disadvantages): A comprehensive review. Poultry Science, 104, 104677. [In persion] https://doi.org/10.1016/j.psj.2024.104677
[10] Khodadadi, M., Masoumi, A., & Sadeghi, M. (2024). Drying, a practical technology for reduction of poultry litter (environmental) pollution: methods and their effects on important parameters. Poultry Science, 103, 104277. [Inpersion] https://doi.org/10.1016/j.psj.2024.104277
[11] Castro, A.M., Mayorga, E.Y., & Moreno, F.L. (2018). Mathematical modelling of convective drying of fruits: A review. J. Food Eng., 223, 152-167. https://doi.org/10.1016/j.jfoodeng.2017.12.012
[12] İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat Mass Transfer., 54, 2101-2112. https://doi.org/10.1007/s00231-018-2294-6
[13] Salehi, F., Goharpour, K., & Razavi Kamran, H. (2024). Effects of different pretreatment techniques on the color indexes, drying characteristics and rehydration ratio of eggplant slices. Results Eng., 21, 101690. [In persion] https://doi.org/10.1016/j.rineng.2023.101690
[14] Salehi, F., Inanloodoghouz, M., Ghazvineh, S., & Moradkhani, P. (2024). Effect of microwave treatment on physicochemical characteristics and efficiency of sour cherry drying process. Iranian Food Science and Technology Research Journal, 20, 339-350. [In persion] https://doi.org/10.22067/ifstrj.2023.83605.1272
[15] Aghili nategh, N., & Dalvand, M.J. (2023). Measurement and prediction of microwave efficiency during drying of apple leaves. Journal of Research in Mechanics of Agricultural Machinery, 12, 11-21. [In persion] https://doi.org/10.22034/jrmam.2023.14049.610
[16] Hernández Maqueda, R., Ballesteros Redondo, I., Jiménez Jácome, S., & Moreno, Á.H. (2018). Microwave drying of amaranth and quinoa seeds: effects of the power density on the drying time, germination rate and seedling vigour. Journal of Microwave Power and Electromagnetic Energy, 52, 299-311. https://doi.org/10.1080/08327823.2018.1534052
[17] Wang, L., Dong, J.-l., Zhu, Y.-y., Shen, R.-l., Wu, L.-g., & Zhang, K.-y. (2021). Effects of microwave heating, steaming, boiling and baking on the structure and functional properties of quinoa (Chenopodium quinoa Willd.) protein isolates. Int. J. Food Sci. Tech., 56, 709-720. https://doi.org/10.1111/ijfs.14706
[18] Oke, M., Hussein, J.B., Olaniyan, S.A., & Adeyanju, J.A. (2017). Applications of artificial neural networks and genetic algorithms in drying of fruits and vegetables: A review. LAUTECH Journal of Engineering and Technology, 11, 1-17.
[19] Abioye, A.O., Hussein, J.B., Olanrewaju Oke, M., & Bolarinwa, I.F. (2024). Modelling some quality attributes of a convective Hot-Air dried tomato slices using ANN and ANFIS techniques. Measurement: Food, 13, 100140. https://doi.org/10.1016/j.meafoo.2024.100140
[20] Salehi, F. (2020). Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. Int. J. Fruit Sci., 20, 506-520. [In persion]https://doi.org/10.1080/15538362.2019.1653810
[21] Maftoonazad, N., Jokar, A., & Zare, M. (2023). Prediction of mass transfer during osmotic dehydration of black fig fruits (Ficus carica) in ternary systems: comparison of response surface methodology and artificial neural network. Innovative Food Technologies, 11, 61-75. [In persion]https://doi.org/10.22104/ift.2023.6155.2136
[22] Doymaz, I. (2007). The kinetics of forced convective air-drying of pumpkin slices. J. Food Eng., 79, 243-248.
[23] Esmaili Adabi, M., Mosavi Seyedi, S.R., Kalantari, D., & Ghavami Adl, B. (2015). Mathematical modelling, kinetics and energy consumption for drying aloe vera gel in hot air dryer with exhaust air recycle. Journal of food science and technology(Iran), 13, 73-83. [In persion]
[24] Salehi, F. (2023). Effects of ultrasonic pretreatment and drying approaches on the drying kinetics and rehydration of sprouted mung beans. Legum. sci., 5, e211. [In persion] https://doi.org/10.1002/leg3.211
[25] Salehi, F., & Satorabi, M. (2021). Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums. Int. J. Fruit Sci., 21, 519-527. [In persion] https://doi.org/10.1080/15538362.2021.1908202
[26] Amini, G., Salehi, F., & Rasouli, M. (2021). Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. J. Food Process. Preserv., 45, e15258. [In persion] https://doi.org/10.1111/jfpp.15258
[27] Shirazi, R., Bakhshabadi, H., & Bazrafshan, M. (2018). Adaptive neuro-fuzzy inference system (ANFIS) application in modeling the oil extraction from peanut with microwave pretreatment. J. Food Sci. Technol. (Iran), 15, 61-72. [In persian]