استفاده از سیستم استنتاج تطبیقی فازی-عصبی برای تخمین انتقال جرم هنگام خشک‌کردن همرفتی جوانه‌های کینوا تیمارشده با مایکروویو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران.

چکیده

سیستم استنتاج تطبیقی فازی-عصبی (انفیس) یک روش جدید برای مدل‌سازی و مطالعه سینتیک انتقال جرم و حرارت هنگام فرآوری مواد غذایی است. در این پژوهش اثر زمان تیماردهی با مایکروویو بر سرعت افت رطوبت، ضریب نفوذ مؤثر رطوبت و آبگیری مجدد جوانه‌های کینوا هنگام خشک‌شدن بررسی و سرعت انتقال جرم با استفاده از مدل‌های سینتیکی و انفیس مدل‌سازی شد. برای اعمال پیش‌تیمار، جوانه‌های کینوا به مدت 0، 30، 60 و 90 ثانیه داخل دستگاه مایکروویو قرار گرفتند و سپس با خشک‌کن هوای داغ خشک شدند. نتایج نشان داد که پیش‌تیمار مایکروویو به مدت 30 ثانیه باعث افزایش سرعت خروج رطوبت، افزایش ضریب نفوذ مؤثر رطوبت و کاهش زمان خشک‌کردن جوانه‌های تازه کینوا می‌گردد. با پیش‌تیمار جوانه‌های کینوا توسط مایکروویو به مدت 30 ثانیه مشاهده گردید که ضریب نفوذ مؤثر رطوبت به‌صورت معنی‌داری از m2s-1 11-10×73/5 به m2s-1 11-10×49/10 افزایش یافت (05/0>p). بر اساس نتایج به دست آمده از بخش بررسی مدل‌های سینتیک مختلف، استفاده از مدل سینتیکی لگاریتمی برای بررسی فرآیند خشک‌کردن جوانه‌های کینوا توصیه می‌شود. با پیش‌تیمار جوانه‌ها توسط مایکروویو به مدت 30 ثانیه مشاهده شد که آبگیری مجدد جوانه‌های خشک‌شده به‌صورت معنی‌داری از 27/196 درصد به 86/253 درصد افزایش یافت (05/0>p). ساختار کلی شبکه انفیس در این مطالعه شامل دو ورودی (زمان پیش‌تیمار مایکروویو و زمان حرارت‌دهی)، 20 تابع عضویت ورودی، 10 قانون در لایه میانی، 10 تابع عضویت خروجی و یک پاسخ خروجی (افت رطوبت جوانه‌های کینوا) بود. نتایج انفیس نشان داد با استفاده از ساختار بهینه انفیس می‌توان درصد افت رطوبت جوانه‌های کینوا تیمارشده با مایکروویو هنگام خشک شدن همرفتی را با دقت بالایی پیش‌بینی نمود. در مجموع، شرایط مناسب برای خشک‌کردن جوانه‌های تازه کینوا، 30 ثانیه پیش‌تیمار با مایکروویو و سپس استفاده از خشک‌کن همرفتی بود. روش مدل‌سازی انفیس توانست افت رطوبت جوانه‌های کینوا را با خطای پایین و ضریب تبیین حدود 99/0 پیش‌بینی کند.

چکیده تصویری

استفاده از سیستم استنتاج تطبیقی فازی-عصبی برای تخمین انتقال جرم هنگام خشک‌کردن همرفتی جوانه‌های کینوا تیمارشده با مایکروویو

تازه های تحقیق

  • Microwave pretreatment for 30 s increases the moisture removal rate, increases the effective moisture diffusivity coefficient, and reduces the drying time of fresh quinoa sprouts.
  • Logarithmic model had a good fit to the experimental data of quinoa sprout drying.
  • Gaussian membership function was suitable for modeling the data in this study, and good results were obtained when using this function.
  • The ANFIS modeling method predict moisture loss of quinoa sprouts with low error and a coefficient of determination of about 0.99.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of adaptive neuro-fuzzy inference system to estimate mass transfer during convective drying of microwave-treated quinoa sprouts

نویسندگان [English]

  • Sepideh Vejdanivahid 1
  • Fakhreddin Salehi 2
1 MSc Student, Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran
2 Associate Professor, Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran.
چکیده [English]

Adaptive neuro-fuzzy inference system (ANFIS) is a new method for modeling and study of mass and heat transfer kinetics during food processing. This study examined the effects of microwave treatment time on the moisture loss rate, effective moisture diffusivity coefficient, and rehydration of quinoa sprouts, and the mass transfer rate was modeled using kinetic models and ANFIS. To apply pretreatment, quinoa sprouts were placed in the microwave device for 0, 30, 60, and 90 s, and after leaving from the device, they were dried in a hot air dryer. The results of this study show that microwave pretreatment for 30 s increases the moisture removal rate, increases the effective moisture diffusivity coefficient, and reduces the drying time of fresh quinoa sprouts. With microwave pretreatment of quinoa sprouts for 30 s, it was observed that the effective moisture diffusivity coefficient increased significantly from 5.73×10-11 m2s-1 to 10.49×10-11 m2s-1 (p<0.05). Based on the results obtained from the section on investigating different kinetic models, the use of a logarithmic kinetic model is recommended to investigate the drying process of quinoa sprouts. With microwave pretreatment of quinoa sprouts for 30 s, it was observed that the rehydration of dried sprouts significantly increased from 196.27% to 253.86% (p<0.05). The overall structure of the ANFIS network in this study includes two inputs (microwave pretreatment time and heating time), 20 input membership functions, 10 rules in the middle layer, 10 output membership functions, and one output response (moisture loss of quinoa sprouts). The results of the ANFIS showed that using the optimal ANFIS structure, the moisture loss percentage of microwave-treated quinoa sprouts during convective drying can be predicted with high accuracy. In general, the appropriate condition for drying fresh quinoa sprouts is a 30 s microwave pretreatment followed by the use of a convection dryer.

کلیدواژه‌ها [English]

  • ANFIS
  • Gaussian membership function
  • Hot-air dryer
  • Logarithmic model
  • Modeling
  • Rehydration
 
[1] Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E.A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J. Sci. Food Agric., 90, 2541-2547. https://doi.org/10.1002/jsfa.4158
[2] Graf, B.L., Rojas-Silva, P., Rojo, L.E., Delatorre-Herrera, J., Baldeón, M.E., & Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14, 431-445. https://doi.org/10.1111/1541-4337.12135
[3] Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa—An Indian perspective. Industrial Crops and Products, 23, 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
[4] Nowak, V., Du, J., & Charrondière, U.R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem., 193, 47-54. https://doi.org/10.1016/j.foodchem.2015.02.111
[5] Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M., & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem., 115, 994-998. https://doi.org/10.1016/j.foodchem.2009.01.037
[6] Złotek, U., Gawlik-Dziki, U., Dziki, D., Świeca, M., Nowak, R., & Martinez, E. (2019). Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. Journal of Chemistry, 2019, 7125169. https://doi.org/10.1155/2019/7125169
[7] Barakat, H., Al-Qabba, M.M., Algonaiman, R., Radhi, K.S., Almutairi, A.S., Al Zhrani, M.M., & Mohamed, A. (2024). Impact of sprouting process on the protein quality of yellow and red quinoa (Chenopodium quinoa). Molecules, 29, 404. https://doi.org/10.3390/molecules29020404
[8] Lan, Y., Wang, X., Wang, L., Zhang, W., Song, Y., Zhao, S., Yang, X., & Liu, X. (2024). Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination. Food Chem., 445, 138693. https://doi.org/10.1016/j.foodchem.2024.138693
[9] Khodadadi, M., & Masoumi, A. (2025). Recent drying technologies used for drying poultry litter (principles, advantages and disadvantages): A comprehensive review. Poultry Science, 104, 104677. [In persion] https://doi.org/10.1016/j.psj.2024.104677
[10] Khodadadi, M., Masoumi, A., & Sadeghi, M. (2024). Drying, a practical technology for reduction of poultry litter (environmental) pollution: methods and their effects on important parameters. Poultry Science, 103, 104277. [Inpersion] https://doi.org/10.1016/j.psj.2024.104277
[11] Castro, A.M., Mayorga, E.Y., & Moreno, F.L. (2018). Mathematical modelling of convective drying of fruits: A review. J. Food Eng., 223, 152-167. https://doi.org/10.1016/j.jfoodeng.2017.12.012
[12] İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat Mass Transfer., 54, 2101-2112. https://doi.org/10.1007/s00231-018-2294-6
[13] Salehi, F., Goharpour, K., & Razavi Kamran, H. (2024). Effects of different pretreatment techniques on the color indexes, drying characteristics and rehydration ratio of eggplant slices. Results Eng., 21, 101690. [In persion] https://doi.org/10.1016/j.rineng.2023.101690
[14] Salehi, F., Inanloodoghouz, M., Ghazvineh, S., & Moradkhani, P. (2024). Effect of microwave treatment on physicochemical characteristics and efficiency of sour cherry drying process. Iranian Food Science and Technology Research Journal, 20, 339-350. [In persion] https://doi.org/10.22067/ifstrj.2023.83605.1272
[15] Aghili nategh, N., & Dalvand, M.J. (2023). Measurement and prediction of microwave efficiency during drying of apple leaves. Journal of Research in Mechanics of Agricultural Machinery, 12, 11-21. [In persion] https://doi.org/10.22034/jrmam.2023.14049.610
[16] Hernández Maqueda, R., Ballesteros Redondo, I., Jiménez Jácome, S., & Moreno, Á.H. (2018). Microwave drying of amaranth and quinoa seeds: effects of the power density on the drying time, germination rate and seedling vigour. Journal of Microwave Power and Electromagnetic Energy, 52, 299-311. https://doi.org/10.1080/08327823.2018.1534052
[17] Wang, L., Dong, J.-l., Zhu, Y.-y., Shen, R.-l., Wu, L.-g., & Zhang, K.-y. (2021). Effects of microwave heating, steaming, boiling and baking on the structure and functional properties of quinoa (Chenopodium quinoa Willd.) protein isolates. Int. J. Food Sci. Tech., 56, 709-720. https://doi.org/10.1111/ijfs.14706
[18] Oke, M., Hussein, J.B., Olaniyan, S.A., & Adeyanju, J.A. (2017). Applications of artificial neural networks and genetic algorithms in drying of fruits and vegetables: A review. LAUTECH Journal of Engineering and Technology, 11, 1-17.
[19] Abioye, A.O., Hussein, J.B., Olanrewaju Oke, M., & Bolarinwa, I.F. (2024). Modelling some quality attributes of a convective Hot-Air dried tomato slices using ANN and ANFIS techniques. Measurement: Food, 13, 100140. https://doi.org/10.1016/j.meafoo.2024.100140
[20] Salehi, F. (2020). Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. Int. J. Fruit Sci., 20, 506-520. [In persion]https://doi.org/10.1080/15538362.2019.1653810
[21] Maftoonazad, N., Jokar, A., & Zare, M. (2023). Prediction of mass transfer during osmotic dehydration of black fig fruits (Ficus carica) in ternary systems: comparison of response surface methodology and artificial neural network. Innovative Food Technologies, 11, 61-75. [In persion]https://doi.org/10.22104/ift.2023.6155.2136
[22] Doymaz, I. (2007). The kinetics of forced convective air-drying of pumpkin slices. J. Food Eng., 79, 243-248.
[23] Esmaili Adabi, M., Mosavi Seyedi, S.R., Kalantari, D., & Ghavami Adl, B. (2015). Mathematical modelling, kinetics and energy consumption for drying aloe vera gel in hot air dryer with exhaust air recycle. Journal of food science and technology(Iran), 13, 73-83. [In persion]
[24] Salehi, F. (2023). Effects of ultrasonic pretreatment and drying approaches on the drying kinetics and rehydration of sprouted mung beans. Legum. sci., 5, e211. [In persion] https://doi.org/10.1002/leg3.211
[25] Salehi, F., & Satorabi, M. (2021). Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums. Int. J. Fruit Sci., 21, 519-527. [In persion] https://doi.org/10.1080/15538362.2021.1908202
[26] Amini, G., Salehi, F., & Rasouli, M. (2021). Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. J. Food Process. Preserv., 45, e15258. [In persion] https://doi.org/10.1111/jfpp.15258
[27] Shirazi, R., Bakhshabadi, H., & Bazrafshan, M. (2018). Adaptive neuro-fuzzy inference system (ANFIS) application in modeling the oil extraction from peanut with microwave pretreatment. J. Food Sci. Technol. (Iran), 15, 61-72. [In persian]