[1] Ellis, D. I., & Goodacre, R. (2001). Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends in Food Science & Technology, 12(11), 414-424. https://doi.org/10.1016/S0924-2244(02)00019-5
[2] Taheri-Garavand, A., Fatahi, S., Omid, M., & Makino, Y. (2019). Meat quality evaluation based on computer vision technique: A review. Meat science, 156, 183-195. https://doi.org/10.1016/j.meatsci.2019.06.002
[3] Salinas, Y., Ros-Lis, J. V., Vivancos, J. L., Martinez-Manez, R., Marcos, M. D., Aucejo, S., ... & Lorente, I. (2012). Monitoring of chicken meat freshness by means of a colorimetric sensor array. Analyst, 137(16), 3635-3643. https://doi.org/10.1039/C2AN35211G
[4] Shi, H., Zhang, M., & Adhikari, B. (2018). Advances of electronic nose and its application in fresh foods: A review. Critical Reviews in Food Science and Nutrition, 58(16), 2700-2710. https://doi.org/10.1080/10408398.2017.1327419
[5] Chen, Q., Hui, Z., Zhao, J., & Ouyang, Q. (2014). Evaluation of chicken freshness using a low-cost colorimetric sensor array with AdaBoost–OLDA classification algorithm. LWT-Food Science and Technology, 57(2), 502-507. https://doi.org/10.1016/j.lwt.2014.02.031
[6] Binson, V. A., George, M. M., Sibichan, M. A., Raj, M., & Prasad, K. (2023, January). Freshness Evaluation of Beef using MOS Based E-Nose. In 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT) (pp. 792-797). IEEE. https://doi.org/10.1109/IDCIoT56793.2023.10053399
[7] Munekata, P. E., Finardi, S., de Souza, C. K., Meinert, C., Pateiro, M., Hoffmann, T. G., ... & Lorenzo, J. M. (2023). Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review. Sensors, 23(2), 672. https://doi.org/10.3390/s23020672
[8] Mirzaee-Ghaleh, E., Taheri-Garavand, A., Ayari, F., & Lozano, J. (2020). Identification of fresh-chilled and frozen-thawed chicken meat and estimation of their shelf life using an E-nose machine coupled fuzzy KNN. Food Analytical Methods, 13, 678-689. https://doi.org/10.1007/s12161-019-01682-6
[9] Balasubramanian, S., Panigrahi, S., Logue, C. M., Marchello, M., Doetkott, C., Gu, H., ... & Nolan, L. (2004). Spoilage identification of beef using an electronic nose system. Transactions of the ASAE, 47(5), 1625-1633. https://doi.org/10.13031/2013.17593
[10] Zhang, Z., Tong, J., Chen, D. H., & Lan, Y. B. (2008). Electronic nose with an air sensor matrix for detecting beef freshness. Journal of bionic Engineering, 5(1), 67-73. https://doi.org/10.1016/S1672-6529(08)60008-6
[11] Boothe, D. D. H., & Arnold, J. W. (2002). Electronic nose analysis of volatile compounds from poultry meat samples, fresh and after refrigerated storage. Journal of the Science of Food and Agriculture, 82(3), 315-322. https://doi.org/10.1002/jsfa.1036
[12] O’Connell, M., Valdora, G., Peltzer, G., & Negri, R. M. (2001). A practical approach for fish freshness determinations using a portable electronic nose. Sensors and Actuators B: chemical, 80(2), 149-154. https://doi.org/10.1016/S0925-4005(01)00904-2
[13] Varidi, M. J., Varidi, M, Vajdi, M.& Sharifpour, A. (2018). Design, development and application of electronic nose instrument to rapidly detect spoilage of air, vacuum and modified atmosphere packaged camel minced meat. Iran Food Science and Technology Society. 15 (74), 213-225. [In Persian]
[14] El Barbri, N., Mirhisse, J., Ionescu, R., El Bari, N., Correig, X., Bouchikhi, B., & Llobet, E. (2009). An electronic nose system based on a micro-machined gas sensor array to assess the freshness of sardines. Sensors and Actuators B: Chemical, 141(2), 538-543. https://doi.org/10.1016/j.snb.2009.07.034
[15] Li, X., Wang, B., Yi, C., & Gong, W. (2022). Gas sensing technology for meat quality assessment: A review. Journal of Food Process Engineering, 45(8), e14055. https://doi.org/10.1111/jfpe.14055
[16] Ayari, F., Mirzaee‐Ghaleh, E., Rabbani, H., & Heidarbeigi, K. (2018). Using an E‐nose machine for detection the adulteration of margarine in cow ghee. Journal of Food Process Engineering, 41(6), e12806. https://doi.org/10.1111/jfpe.12806
[17] Taheri-Garavand, A., Rezaei Nejad, A., Fanourakis, D., Fatahi, S. & Ahmadi Majd, M. (2021). Employment of artificial neural networks for non-invasive estimation of leaf water status using color features: A case study in Spathiphyllum wallisii. Acta Physiologiae Plantarum, 43(5), 78. https://doi.org/10.1007/s11738-021-03244-y
[18] Taheri-Garavand, A., Nasiri, A., Fanourakis, D., Fatahi, S., Omid, M. & Nikoloudakis, N. (2021). Automated in situ seed variety identification via deep learning: a case study in chickpea.
Plants,
10(7), 1406.
https://doi.org/10.3390/plants10071406
[19] Timsorn, K., Wongchoosuk, C., Wattuya, P., Promdaen, S., & Sittichat, S. (2014, May). Discrimination of chicken freshness using electronic nose combined with PCA and ANN. In 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1-4). IEEE.
[20] Fatahi, S., Taheri Geravand, A., & Shahbazi, F. (2017). Estimate freshness of chicken meat using image processing and artificial intelligent techniques. Iranian Journal of Biosystems Engineering, 48(4), 491-503. https://doi.org/10.22059/IJBSE.2017.63814 [In Persian]