[1] Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., & Lin, H. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Gene., 40, 1370-1374.
[2] Sapirstein, H.D., Neuman, M., Wright, E.H., Shwedyk, E., & Bushuk, W. (1987). An instrumental system for cereal grain classification using digital image analysis. J. Cereal Sci., 6, 3-14.
[3] Neuman, M., Sapirstein, H., Shwedyk, E., & Bushuk, W. (1989). Wheat grain color analysis by digital image processing ii. Wheat class discrimination. J. Cereal Sci., 10(3), 183-188.
[4] Walker, C.K., & Panozzo, J.F. (2012). Measuring volume and density of a barley grain using ellipsoid approximation from a 2-d digital image. J. Cereal. Sci., 55, 61-68.
[5] Manickavasagan, A., Sathya, G., Jayas, D., & White, N. (2008). Wheat class identification using monochrome images. J. Cereal. Sci., 47, 518-527.
[8] Zapotoczny, P. (2011). Discrimination of wheat grain varieties using image analysis and neural networks. Part i. single kernel texture. J. Cereal. Sci., 54, 60-68.
[10] Patil, K., and R. & Kumar. (2011). Advances In Image Processing for Detection Of Plant. Adv. Bioinf. Appl. And Research., 2, 135-141.
[11] Duan, L., Yang, W., Bi, K., Chen, S., Luo, Q., & Liu, Q. (2011a). Fast discrimination and counting of filled/unfilled rice spikelet based on bi-modal imaging. Comp. and Electronics in Agric., 75, 196–203.
[12] Duan, L., Huang, C., Chen, G., Xiong, L., Liu, Q., & Yang, W. (2014). High-throughput estimation of yield for individual rice plant using multi-angle RGB imaging. Int. Conf. on Computer and Computing Tech. in Agriculture. Springer., 1–12
[13] Liu, T., Wu, W., Chen, W., Sun, C., Chen, C., Wang, R., Zhu, X., & Guo, W. (2016). A shadow-based method to calculate the percentage of filled rice grains. Biosys. Eng., 150, 78-88.
[14] Fazaeli Bagh Dolabi, H., & Afkari Sayah, A. (2008). Mixing percentage of hard and soft wheat in the grain mass by machine vision method.
National Conf. of Water, Soil, Plant and Agricultural Mechanization Sciences, Dezful.
https://civilica.com/doc/140183T.
[15] Hatami, M., Rahmani Didar, A., & Khazaei, J. (2010). Identification of Iranian rice varieties using machine vision techniques. 6th National Cong. Of Agr. Machinery Eng. And Mechanization, Tehran, 65-60.
[16] Mousavi Rad, S. J., & Akhlikian Tab, F. (2012). Designing an expert system for recognizing the authenticity of rice cultivars using the combination of textural features of rice mass images. Machine Vision and Image Processing.,1, 68-74.
[17] Næs T, Brockhoff PB, & Tomic, O. (2010). Statistics for Sensory and Consumer Science. John Wiley & Sons Ltd. UK.
[18] Payman, S.H., Bakhshipour A., Zareiforoush, H. (2018). Development of an expert vision-based system for inspecting rice quality indices. Quality Assurance and Safety of Crops & Foods., 10 (1): 103-114.
[19] Reza, M.N., Na, I.S., Baek, S.W., & Lee, K.H. (2019). Rice yield estimation based on k-means clustering with graph-cut segmentation using low-altitude UAV images. J. Biosys. Eng., 177, 109-121.
[20] Chen, S., Xiong, J., Guo, W., Bu, R., Zheng, Z., Chen, Y., Yang, Z, Lin. (2019). Colored rice quality inspection system using machine vision. Journal of Cereal Science., 88, 87-95.
[21] He Y, Fan B, Sun L, Fan X, Zhang J, Li Y and Suo X. (2023). Rapid appearance quality of rice based on machine vision and convolutional neural network research on automatic detection system. Front. Plant Sci., 14:1190591. Doi: 10.3389/fpls.2023.1190591
[22] Duan, L., Yang, W., Huang, C., & Liu, Q. (2011b). A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Nat. J. of Signal Processing, Image Processing, and Pattern Recognition., 8, 19-30.
[23] Singh, K.R., Chaudhury, S. (2016). Efficient Technique for Rice Grain Classification Using Back-Propagation Neural Network and Wavelet Decomposition. IET Comput. Vis., 10, 780–787.
[24] Kuo, T.Y., Chung, C.L., Chen, S.Y., Lin, H.A., Kuo, Y.F. (2016). Identifying Rice Grains Using Image Analysis and Sparse-Representation-Based Classification. Comput. Electron. Agric., 127, 716–725.
[25] Cinar, I., Koklu, M. (2019). Classification of Rice Varieties Using Artificial Intelligence Methods. Int. J. Intell. Syst. Appl. Eng., 7, 188–194.
[26] Anami, B.S., Malvade, N.N., Palaiah, S. (2019). Automated Recognition and Classification of Adulteration Levels from Bulk Paddy Grain Samples. Inf. Process. Agric., 6, 47–60.
[27]
Ruslan, R.,
Khairunniza-Bejo, S.,
Jahari, M.,
Ibrahim, M.F. (2022). Weedy Rice Classification Using Image Processing and a Machine Learning Approach.
Agriculture., 12(5), 645.