توسعه یک سامانه بینایی ماشین هوشمند به منظور کیفیت‌سنجی برخط شلتوک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 هیات علمی/ دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

روش‌هایی که به طور معمول برای شناسایی شلتوک‌های ‌پوک از سالم مورد استفاده قرار می‌گیرند، اغلب زمان‌بر و هزینه‌بر هستند. به همین دلیل، در این پژوهش روشی هوشمند و سریع مبتنی بر بینایی ماشین و شبکه‌های عصبی مصنوعی به‌منظور تشخیص دانه‌‌های شلتوک پوک از سالم ارائه شد. تصاویر دیجیتالی پنج رقم شلتوک در سه وضعیت سالم، پوک و مخلوط و در دو حالت پراکنده و کپه‌ای تهیه شدند. پس از انجام پیش پردازش و قطعه‌بندی، برای هر دانه شلتوک 3 ویژگی رنگی و 5 ویژگی شکلی استخراج شد. به‌منظور تشخیص تاثیرگذارترین ویژگی‌ها در تشخیص شلتوک‌‌های سالم از پوک، روش تحلیل مولفه‌های اصلی(PCA) بکار گرفته شد. سپس برای ایجاد مدل شناسایی و دسته‌بندی نمونه‌ها شبکه‌های عصبی مصنوعی پرسپترون چندلایه (MLP) بر اساس مولفه‌های اصلی که با روش PCA بدست آمده بودند، مورد استفاده قرار گرفت. برای بررسی قابلیت مدلسازی و اعتبارسنجی هر الگوریتم از پارامترهای آماری میانگین مربعات خطا (MSE)، ضریب همبستگی (R2)، ویژگی و حساسیت استفاده شد. نتایج نشان داد که روش هوشمند طراحی شده می‌تواند با دقت قابل قبول در تمامی ارقام (R2P>0.81, RMSEp<0.219, Sensitivitiy>0.8 & Specifisitiy>0.98) دانه‌های سالم و پوک را تشخیص دهد. بنابراین از روش بینایی ماشین در ترکیب با شبکه‌های عصبی مصنوعی می‌توان به عنوان روشی هوشنمد و سریع در ورودی کارخانه‌های سفیدکن شلتوک برای ارزیابی کیفیت شلتوک و تشخیص شلتوک‌های سالم از پوک استفاده کرد.

چکیده تصویری

توسعه یک سامانه بینایی ماشین هوشمند به منظور کیفیت‌سنجی برخط شلتوک

تازه های تحقیق

  • ارائه روش جدید و غیر مخرب برای تشخیص درصد پوکی شلتوک بر اساس بینایی ماشین
  • استفاده از خصوصیات رنگی پیکسل های منفرد برای تشخیص درصد پوکی شلتوک
  • امکان استفاده برخط از سامانه پیشنهادی در حالت کپه ای و در حال حرکت توده شلتوک
  • حداکثر خطای تشخیص کمتر از 10% در حالت توده ای محصول

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of an intelligent machine vision system for the purpose of online quality measurement of rice paddy

نویسندگان [English]

  • Fatemeh Sadeghi 1
  • Davood Kalantari 2
  • Sajad Kiani 1
1 sari agricultural sciences and natural resources university
2 Dep. of Biosystems Eng., Faculty of Agr. Eng. SANRU
چکیده [English]

The common methods that are usually used to identify the devoid rough rice from the healthy ones are often time-consuming and expensive. For this reason, in this research, a smart and fast method based on machine vision system coupled with artificial neural networks is presented in order to predict the percentage of devoid/healthy rough rice grains. Digital images of five varieties of paddy were prepared in three states: healthy, devoid, and mixed, in two states scattered and piled. After pre-processing and segmentation, 3 color features and 5 morphological features were extracted for each rice grain. Principal component analysis (PCA) method was then used in order to identify the most effective features in distinguishing devoid rough from healthy rice. In the next step, multilayer perceptron (MLP) algorithm based on the main components obtained by PCA method was used to create models for identifying and classifying the samples. Root Mean Square Error (RMSE), correlation coefficient (R2), specificity and sensitivity were used to evaluate the modeling capability and validation of each algorithm. The obtained results showed that the designed intelligent method can identify devoid rough rice seeds with acceptable accuracy in all cultivars (R2P>0.81, RMSEp<0.219, Sensitivity>0.8 & Specificity>0.98). Therefore, the machine vision system in combination with artificial neural networks can be used as an intelligent and fast method at the entrance of rice bleaching factories to evaluate the quality of harvested rough rice and predict the percentage of unhealthy rough rice.

کلیدواژه‌ها [English]

  • Image Processing
  • Artificial Neural Network
  • Matlab
  • Nondestructive Test
[1] Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., & Lin, H. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Gene., 40, 1370-1374.
[2] Sapirstein, H.D., Neuman, M., Wright, E.H., Shwedyk, E., & Bushuk, W. (1987). An instrumental system for cereal grain classification using digital image analysis. J. Cereal Sci., 6, 3-14.
[3] Neuman, M., Sapirstein, H., Shwedyk, E., & Bushuk, W. (1989). Wheat grain color analysis by digital image processing ii. Wheat class discrimination. J. Cereal Sci., 10(3), 183-188.
[4] Walker, C.K., & Panozzo, J.F. (2012). Measuring volume and density of a barley grain using ellipsoid approximation from a 2-d digital image. J. Cereal. Sci., 55, 61-68.
[5] Manickavasagan, A., Sathya, G., Jayas, D., & White, N. (2008). Wheat class identification using monochrome images. J. Cereal. Sci., 47, 518-527.
[6] Kiani, S., Azimifar, Z., & Kamgar, S. (2010). Wavelet-based crop detection and classification. 18th Iranian Conf. on Elect. Engineering. IEEE., 587-591.
[7] Kiani, S; Minaei, S., Ghasemi-Varnamkhasti, M., & Ayyari, M. (2017). An original approach for the quantitative characterization of saffron aroma strength using electronic nose. Int. j. Food Properties., 20, 673-683.
[8] Zapotoczny, P. (2011). Discrimination of wheat grain varieties using image analysis and neural networks. Part i. single kernel texture. J. Cereal. Sci., 54, 60-68.
 
[9] Minaei, S., Kiani, S., Ayyari, M., & Ghasemi-Varnamkhasti, M. (2017). A portable computer-vision-based expert system for saffron color quality characterization. J. Applied Research on Medicinal and Aromatic Plants., 7, 124-130.
 
[10] Patil, K., and R. & Kumar. (2011). Advances In Image Processing for Detection Of Plant. Adv. Bioinf. Appl. And Research., 2, 135-141. 
[11] Duan, L., Yang, W., Bi, K., Chen, S., Luo, Q., & Liu, Q. (2011a). Fast discrimination and counting of filled/unfilled rice spikelet based on bi-modal imaging. Comp. and Electronics in Agric., 75, 196–203.
[12] Duan, L., Huang, C., Chen, G., Xiong, L., Liu, Q., & Yang, W. (2014). High-throughput estimation of yield for individual rice plant using multi-angle RGB imaging. Int. Conf. on Computer and Computing Tech. in Agriculture. Springer., 1–12
[13] Liu, T., Wu, W., Chen, W., Sun, C., Chen, C., Wang, R., Zhu, X., & Guo, W. (2016). A shadow-based method to calculate the percentage of filled rice grains. Biosys. Eng., 150, 78-88.
[14] Fazaeli Bagh Dolabi, H., & Afkari Sayah, A. (2008). Mixing percentage of hard and soft wheat in the grain mass by machine vision method. National Conf. of Water, Soil, Plant and Agricultural Mechanization Sciences, Dezful. https://civilica.com/doc/140183T.
[15] Hatami, M., Rahmani Didar, A., & Khazaei, J. (2010). Identification of Iranian rice varieties using machine vision techniques. 6th National Cong. Of Agr. Machinery Eng. And Mechanization, Tehran, 65-60.
[16] Mousavi Rad, S. J., & Akhlikian Tab, F. (2012). Designing an expert system for recognizing the authenticity of rice cultivars using the combination of textural features of rice mass images. Machine Vision and Image Processing.,1, 68-74.
[17] Næs T, Brockhoff PB, & Tomic, O. (2010). Statistics for Sensory and Consumer Science. John Wiley & Sons Ltd. UK.
[18] Payman, S.H., Bakhshipour A., Zareiforoush, H. (2018). Development of an expert vision-based system for inspecting rice quality indices. Quality Assurance and Safety of Crops & Foods., 10 (1): 103-114.
 
[19] Reza, M.N., Na, I.S., Baek, S.W., & Lee, K.H. (2019). Rice yield estimation based on k-means clustering with graph-cut segmentation using low-altitude UAV images. J. Biosys. Eng., 177, 109-121.
[20] Chen, S., Xiong, J., Guo, W., Bu, R., Zheng, Z., Chen, Y., Yang, Z, Lin. (2019). Colored rice quality inspection system using machine vision. Journal of Cereal Science., 88, 87-95.
 
[21] He Y, Fan B, Sun L, Fan X, Zhang J, Li Y and Suo X. (2023). Rapid appearance quality of rice based on machine vision and convolutional neural network research on automatic detection system. Front. Plant Sci., 14:1190591. Doi: 10.3389/fpls.2023.1190591
[22] Duan, L., Yang, W., Huang, C., & Liu, Q. (2011b). A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Nat. J. of Signal Processing, Image Processing, and Pattern Recognition., 8, 19-30.
[23] Singh, K.R., Chaudhury, S. (2016). Efficient Technique for Rice Grain Classification Using Back-Propagation Neural Network and Wavelet Decomposition. IET Comput. Vis.10, 780–787.
[24] Kuo, T.Y., Chung, C.L., Chen, S.Y., Lin, H.A., Kuo, Y.F. (2016). Identifying Rice Grains Using Image Analysis and Sparse-Representation-Based Classification. Comput. Electron. Agric., 127, 716–725.
[25] Cinar, I., Koklu, M. (2019). Classification of Rice Varieties Using Artificial Intelligence Methods. Int. J. Intell. Syst. Appl. Eng.7, 188–194. 
[26] Anami, B.S., Malvade, N.N., Palaiah, S. (2019). Automated Recognition and Classification of Adulteration Levels from Bulk Paddy Grain Samples. Inf. Process. Agric.6, 47–60.
[27] Ruslan, R., Khairunniza-Bejo, S., Jahari, M., Ibrahim, M.F. (2022). Weedy Rice Classification Using Image Processing and a Machine Learning Approach. Agriculture., 12(5), 645.