[[1]] Aguirre, J. F., Osella, C. A., Carrara, C. R., Sanchez, H. D., & Buera, M. D. P. (2011). Effect of storage temperature on starch retrogradation of bread staling. Starch/Staerke, 63(9), 587–593.
[[1]] Gray, J. A., & Bemiller, J. N. (2003). Bread staling: Molecular basis and control. CRFSFS., 2(1), 1–21.
[[1]] Ribotta, P.D., & Le-Bail, A. (2007). Thermophysical assessment of bread during staling. LWT., 40(5), 879-884.
[[1]] Edel León, A., Durán, E., & De Barber, C. (2002). Utilization of Enzyme Mixtures to Retard Bread Crumb Firming. Agric. Food Chem., 50(6), 1416-9.
[[1]] Ribotta, P. D., Leon, A. E., & Anon, M. C. (2003). Effect of freezing and frozen storage on the gelatinization and retrogradation of amylopectin in dough baked in a differential scanning calorimeter. Food Res. Int. 36, 357–363.
[[1]]Aguirre, J.F., Osella, C.A., Carrara, C.R., Sanchez, H.D., & Buera, M.P. (2011). Effect of storage temperature on starch retrogradation of bread staling. Starch – Starke, 63(9), 587-593.
[[1]] Gray, J. A., & Bemiller, J. N. (2003). Bread Staling: Molecular Basis and Control.CRFSFS., 2(1), 1−21.
[[1]] Marinopoulou, A. Petridis, D., & Raphaelides, S.N. (2019). Assessment of texture changes in sliced pan bread on aging using sensory and instrumental method. Food Process. Preserv., 43(2), 13982.
[[1]] Chen, Y., Eder, S., Schubert, S., Gorgerat, S., Boschet, E., Baltensperger, L., Boschet, E., Städeli, Ch., Kuster, S., Fischer, P., & Windhab, E.J. (2021). Influence of Amylase Addition on Bread Quality and Bread Staling. ACS Food Sci. Technol., 1(6), 1143–1150.
[[1]] Xie, F., Dowell, F., & Sun, X. (2003). Compuarison of Near-Infrared Reflectance Spectroscopy and Texture Analyzer for Measuring Wheat Bread Changes in Storage. Cereal Chem., 80(1), 25-29.
[[1]] Al-Mahasneh, M., Aljarrah, M., Rababah, T., & Aludatt, M. (2018). Using MR-STIR and Texture Profile to Track the Effect of Storage Time and Temperature on Pita Bread Staling. Food Qual., 18(1), 1-9.
[[1]] Nouri, M., Nasehi, B., Goudarzi, M., & Abdanan Mehdizadeh., S. (2018). Non-destructive Evaluation of bread Staling Using Gray Level Co-occurrence Matrices. Food Anal. Methods, 11(2).
[[1]] Rusinek, R., Gancaraz, M., & Agieszka, N. (2020). Application of an electronic with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. Food Sci. Technol., 117, 108665.
[[1]] Abdanan Mehdizadeh, S., & Nouri, S. F. (2022). Development of a non-destructive method to determine the textural characteristics of baguette bread using a Doppler laser vibrometer sensor. Innovative Food Technol., 10(1), 69-85. [In Persian]
[[1]] Scotter, C. (1990). Use of near infrared spectroscopy in the food industry with particular reference to its applications to on/in-line food processes. Food Control, 1(3), 142-149.
[[1]] Ariana, D., Lu, R., & Guyer, D. E. (2006). Hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput. Electron. Agric., 53(1), 60-70.
[[1]] Brosnan, T., & Sun, D. W. (2004). Improving quality inspection of food products by computer vision e a review. Food Eng., 61(1), 3-16.
[[1]] Du, C. J., & Sun, D. W. (2004). Recent developments in the applications of image processing techniques for food quality evaluations. Trends in Food Sci. Technol., 15, 230-249.
[[1]] Chao, K., Chen, Y. R., Early, H., & Park, B. (1999). Color image classification systems for poultry viscera inspection. Appl. Eng. Agric., 15(4), 363-369
[[1]] Liu, Y., Chen, Y. R., Kim, M. S., Chan, D. E., & Lefcourt, A. M. (2007). Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging. Food Eng., 81(2), 412-418.
[[1]] Park, B., Lawrence, K. C., Windham, W. R., & Smith, D. (2006). Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. Food Eng., 75(3), 340-348.
[[1]] Lu, B., Dao, Ph., Liu, J., He, Y., & Shang, J. (2020). Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens., 12(16), 2659.
[[1]] Gowen, A.A., O’Donnell,P.J, C.P., Downey, C.G., & Frias, J.M. (2007). Hyperspectral imaging an emerging process analytical tool for food quality and safety control. Trends in Food Sci. Technol., 18, 590-598.
[[1]] Lucieer, A., Malenovský, Z.; Veness, T., & Wallace, L. (2014). HyperUAS-imaging spectroscopy from a multirotor unmanned aircraft system. Field Robot, 31, 571–590.
[[1]] Gonzalez-Dugo, V., Hernandez, P., Solis, I., & Zarco-Tejada, P. (2015). Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping. Remote Sens.,7, 13586–13605.
[[1]] Lee, K., Cohen, W.B., Kennedy, R.E., Maiersperger, T.K., & Gower, S.T. (2004). Hyperspectral versus multispectral data for estimating leaf area index in four di-erent biomes. Remote Sens. Environ., 91, 508–520.
[[1]] Mariotto, I., Thenkabail, P.S., Huete, A., Slonecker, E.T., & Platonov, A. (2013). Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ., 139, 291–305.
[[1]] Marshall, M., & Thenkabail, P. (2015). Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS J. Photogramm., 108, 205–218.
[[1]] Sun, J., Yang, J., Shi, S., Chen, B., Du, L., Gong, W., & Song, S. (2017). Estimating Rice Leaf Nitrogen Concentration: Influence of Regression Algorithms Based on Passive and Active Leaf Reflectance. Remote Sens., 9, 951.
[[1]] Mahlein, A.K., Steiner, U., Hillnhütter, Ch., Dehne, H.W., & Oerke, E.C. (2012). Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8(1), 3.
[[1]] Balasundaram, D., Burks, TF., Bulanon, D.M., Schubert, T., & Lee, W. (2009). Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit. Postharvest Biol. & Tec., 51, 220-226.
[[1]] Qin, J., Burks, T.F., Ritenour, M.A., & Bonn, W. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Food Eng., 93, 183-191.
[[1]] Chen, Z., Wang, Q., Zhang, H., & Nie, P. (2021). Hyperspectral Imaging (HSI) Technology for the Non-Destructive Freshness Assessment of Pearl Gentian Grouper under Different Storage Conditions. Sensors, 21(2), 583.
[[1]] Saleem, Z., Hussain Khan, M., Ahmad, M., Sohaib, A., Ayaz, H., & Mazzara, M. (2020). Prediction of Microbial Spoilage and Shelf-Life of Bakery Products Through Hyperspectral Imaging. IEEE Access, 8.
[[1]] Sricharoonratana, M., Thompson, A., & Teerachaichayut, S. (2021). Use of near infrared hyperspectral imaging as a nondestructive method of determining and classifying shelf life of cakes. LWT, 136(2), 110369.
[[1]] Kim, G., Lee, H., Baek, I., Cho, B., & Kim, M. (2022). Short-Wave Infrared Hyperspectral Imaging System for Nondestructive Evaluation of Powdered Food. Biosyst. Eng., 47(2), 223-232.
[[1]] Savage, S. H., Levy, T. E., & Jones, I. W. (2012). Prospects and problems in the use of hyperspectral imagery for archaeological remote sensing: A case study from the Faynan copper mining district. Jordan. Archaeologic Sci., 39(2), 407–420.
[[1]] Vidal, M., & Amigo, J. M. (2012). Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst., 117, 138–148.
[[1]] Joleini, M., GhiafeDawoodi, M., & Sheikholeslami, Z. (2016). Effect of flaxseed addition on nutritional properties and shelf life of Berber bread. innovation in Food sci, Technol., 9(3), 1-11. [In Persian]
[[1]] AACC (American Association of Cereal Chemists). (2000). Method 44-19, Moisture, Approved Methods. MN, USA: St Paul.
[[1]] Sahraiyan, B., Mazaheri Tehrani, M., Naghipour, F., Ghiafeh Davoodi, M., & Soleimani, M. (2013). The effect of mixing wheat flour with rice bran and soybean flour on physicochemical and sensory properties of baguettes. Iranian J. Nutrition Sci. Food Technol., 8(3), 229-240. [In persian]
[[1]] Burger, J., & Geladi, P. (2005). Hyperspectral NIR image regression part I: Calibration and correction. Chemometrics, 19, 355–363.
[[1]] Burger, J., & Geladi, P. (2006). Hyperspectral NIR image regression part II: Dataset preprocessing diagnostics.
Chemometrics, 20(3-4), 106–119.
[[1]] Aviara, N. A., Liberty, J. T., Olatunbosun, O. S., Shoyombo, H. A., & Oyeniyi, S. K. (2022). Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage. Agric. Food Res., 100288.
[[1]] Wold, S., Esbensen, K., & Geladi, P. (1987). Priciple component analysis. Chemom. Intell. Lab. Syst., 2: 37-52.جزئیات بیشتر؟؟
[[1]] Bro, R., & Smilde, A. K. (2014). Principal component analysis (Tutorial Review). Analytical Methods. 6(9), 2812–2831.
[[1]] De Juan, A., Piqueras, S., Maeder, M., Hancewicz, T., Duponchel, L., & Tauler, R. (2014). Chemometric Tools for Image Analysis. R, Salzer, H.W. Siesler (Eds). In: Infrared and Raman Spectroscopic Imaging (2nd ed., pp. 57–110). Publisher: Wiley-VCH.
[[1]] Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemom.Intell. Lab. Syst., 58(2), 109–130.
[[1]] Soltani Kazemi, M., Abdanan Mehdizadeh, S., Heidari, M., & Faregh, S. M. (2017). Predict changes of some quality parameters of black mulberry juice (Morusnigra L.) during ripening using machine vision and fractal analysis. Iranian Food Sci. Technol. Res. J., 13(5), 730-743.
[[1]] Salehi, M., Farhadi, S., Moieni, A., Safaie, N., & Hesami, M. (2021). A hybrid model based on general regression neural network and fruit fly optimization algorithm for forecasting and optimizing paclitaxel biosynthesis in Corylus avellana cell culture. Plant Methods, 17, 1-13.
[[1]] Xu, X., Chen, S., Ren, L., Han, C., Lv, D., Zhang, Y., & Ai, F. (2021). Estimation of heavy metals in agricultural soils using vis-NIR spectroscopy with fractional-order derivative and generalized regression neural network. Remote Sens., 13(14), 2718.
[[1]] Melini, V., & Melini, F. (2018). Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation, 4(1).
[[1]] Pateras, I.M.C. (1998). Bread spoilage and staling. Technology of Breadmaking,240–261.
[[1]] Nhouchi, Z., & Karoui, R. (2018). Application of Fourier-transform mid infrared for the monitoring of pound cakes quality during storage. Food Chem., 252, 327-334.
[[1]] Botosoa, E.P., Christine, C., & Karoui, R. (2013). Monitoring Changes in Sponge Cakes during Aging by Front Face Fluorescence Spectroscopy and Instrumental Techniques. Agric. Food Chem., 61(11), 2687-2695.
[[1]] AzarBad, H., Mzaheri, M., & Rashidi, H. (2016). Determination of chemical, sensory and mechanical texture characteristics of reduced gluten Barbari bread made from Wheat flour and Millet flour blend. Food Res. (Agric. sci.), 26(1), 139-149. [In persian].
[[1]] Mehdizadeh, S. A., Minaei, S., Hancock, N. H., & Torshizi, M. A. K. (2014). An intelligent system for egg quality classification based on visible-infrared transmittance spectroscopy. Inf. Process. Agric., 1(2), 105-114.
[[1]] Guo, S., Rösch, P., Popp, J., & Bocklitz, T. (2020). Modified PCA and PLS: Towards a better classification in Raman spectroscopy–based biological applications. Chemometrics, 34(4), 3202.
[[1]] Ozaki, Y., Huck, C., Tsuchikawa, S., & Engelsen, S.B. (2021). Near-infrared spectroscopy: theory, spectral analysis, instrumentation, and applications (1st ed. ). Berlin-Heidelberg, Germany: Springer.
[[1]] Raypah, M. E., Faris, A. N., Mohd Azlan, M., Yusof, N. Y., Suhailin, F. H., Shueb, R. H., & Mustafa, F. H. (2022). Near-Infrared Spectroscopy as a Potential COVID-19 Early Detection Method: A Review and Future Perspective. Sensors, 22(12), 4391.
[[1]] Raypah, M. E., Omar, A. F., Muncan, J., Zulkurnain, M., & Abdul Najib, A. R. (2022). Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics. Molecules, 27(7), 2324.
[[1]] Fagan, C. C., Everard, C., O’Donnell, C. P., Downey, G., Sheehan, E. M., Delahunty, C. M., O’Callaghan, D. J., & Howard, V. (2007). Prediction of processed cheese instrumental texture and meltability by mid-infrared spectroscopy coupled with chemometric tools. Food Eng., 80(4), 1068-107.
[[1]] Chakravartula, S., Cevoli, Ch., Balestra, F., Fabbri, A., & Rosa, M. (2019). Evaluation of drying of edible coating on bread using NIR spectroscopy. Food Eng., 240, 29-37.