ریزدرون‌پوشانی عصاره حاصل از هسته خرمای کبکاب (Phoenix dactylifera L. cv Kabkab) برشته‌شده به روش خشک‌کردن انجمادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و صنایع غذایی، واحد سروستان، دانشگاه آزاد، سروستان، فارس، ایران

2 استادیار، گروه علوم و صنایع غذایی، واحد سروستان، دانشگاه آزاد اسلامی، سروستان، فارس، ایران

3 استادیار، گروه شیلات، دانشکده منابع طبیعی دریا، دانشگاه علوم و فنون دریایی، خرمشهر، ایران

چکیده

این مطالعه با هدف بررسی ویژگی‌های فیزیکوشیمیایی عصاره ریزدرون‌پوشانی‌شده هسته خرما انجام شد. عصاره هسته خرمای کبکاب (Phoenix dactylifera) برشته شده (دمای °C180 و 20 دقیقه) توسط ترکیب روش استخراج به کمک امواج فراصوت (دامنه 80 %؛ 30 دقیقه،) و مایکروویو (5/2 دقیقه) جداسازی شد. ترکیبات فنولی اصلی این عصاره به کمک کروماتوگرافی مایع با کارایی بالا (HPLC) شناسایی شد. ریزدرون‌پوشانی این عصاره به کمک نسبت‌های مختلف مالتودکسترین-کنسانتره پروتئین سویا و به روش خشک‌کن انجمادی مطابق تیمارهای زیر انجام شد: M(100): مالتودکسترین خالص؛ S(100): پروتئین سویای خالص؛ MS(75.25): مالتودکسترین: سویا 75 به 25؛ MS(50.50): مالتودکسترین: سویا 50:50؛ MS(25.75): مالتودکسترین: سویا 25: 75. گالیک اسید (mg 100 g-1 dEx 87/536) و کاتکین (mg 100 g-1 dEx 79/214) به ترتیب مهم‌ترین ترکیبات فنولی و فلاونوئیدی این عصاره بودند. نوع دیواره میکروذرات تأثیر معنی‌داری بر رطوبت و فعالیت آبی آن‌ها نداشت. چگالی توده‌ای ذرات g cm-3 232/0- 178/0 بود. بیش‌ترین و کم‌ترین حلالیت مربوط به M(100) و S(100) بود. ذرات تشکیل‌شده ساختاری ناهمگن، فلسی و ورقه‌ای‌ داشتند. ترک‌هایی نیز در سطح ذرات به ویژه M(100) مشاهده شد. بهترین کارایی ریزدرون‌پوشانی در نمونه‌های مالتودکسترین- پروتئین سویا (به ویژه MS(50.50): ) مشاهده شد. ریزدرون‌پوشانی عصاره هسته خرما (بدون در نظر گرفتن نوع دیواره) توانست به حفظ ترکیبات فنولی طی دوران نگهداری کمک کند. در حالی که 88/68 درصد ترکیبات فنولی عصاره آزاد هسته خرما بعد از 35 روز نگهداری در دمای °C 35 از بین رفت. ریزدرون‌پوشانی ذرات باعث حفظ 79/61 درصد (M(100)) تا 69/76 درصد (MS(50.50)) ترکیبات فنولی عصاره هسته خرما شده است. با توجه به حلالیت مناسب، رطوبت و فعالیت آبی پایین و توانایی حفظ ترکیبات فنولی، میکرو ذرات عصاره هسته خرما (به ویژه MS(50.50)) می‌تواند به عنوان یک ترکیب زیست فعال کارا و مقرون به صرفه برای محافظت ماده غذایی و بهبود ارزش تغذیه‌ای آن پیشنهاد شود.

چکیده تصویری

ریزدرون‌پوشانی عصاره حاصل از هسته خرمای کبکاب (Phoenix dactylifera L. cv Kabkab) برشته‌شده به روش خشک‌کردن انجمادی

تازه های تحقیق

  • ترکیبات فنولی عصاره هسته خرما استخراج شده به روش فراصوت-مایکروویو شناسایی شد.
  • عصاره هسته خرما به کمک نسبت‌های مختلف مالتودکسترین-کنسانتره پروتئین سویا درون‌پوشانی شد.
  • کارایی درون‌پوشانی نمونه‌های پوشش داده شده با مالتودکسترین- کنسانتره پروتئین سویا برتر از سایر نمونه‌ها بود.
  • میکرو ذرات عصاره هسته خرما یک ترکیب زیست فعال کارا و مقرون به صرفه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Encapsulation of extract from roasted Kabkab date (Phoenix dactylifera L.) seed using freeze-drying

نویسندگان [English]

  • Seyed Jaber Pourshoaib 1
  • Mohammad Amin Shamekhi 2
  • Ebrahim Rajabzadeh Ghatrami 3
1 Ph.D. student, Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Fars, Iran
2 Assistant Professor, Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Fars, Iran.
3 Assistant Professor, Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
چکیده [English]

The present study aimed to investigate the physicochemical characteristics of the encapsulated roasted date-seed (180°C, 20 min) extract. Date-seed (Phoenix dactylifera L. cv Kabkab) extract was obtained using a combination of ultrasound- (25 ± 5 ºC, 15min.) and microwave- (2.30min.) assisted extraction. Phenolic-compounds of the extract were identified by HPLC. The encapsulation process was done by the freeze-drying method. Soy-protein concentrate and maltodextrin were used as wall materials (M(100): Pure Maltodextrin; S(100): Pure Soy-protein; MS(75:25): Maltodextrin: Soy-protein (75:25%); MS (50:50): Maltodextrin: Soy-protein (50:50%); MS (25:75): Maltodextrin: Soy-protein (25:75%)). Gallic-acid (536.87 mg 100 g-1dEx) and catechin (214.79 mg 100 g-1dEx) were the major phenolic and flavonoid compounds of the extract. The type of wall material had no significant effect on the moisture content and water-activity. The microparticle's bulk-density was varied from 0.232-0.178 g cm-3. The difference between M(100) and S(100) was significant. The microparticles showed a heterogeneous and irregular structure with flake- and sheet-shaped morphology. Several cracks were visible on the M(100) surface. The best encapsulation-efficiency was achieved for microparticles using a combination of maltodextrin and soy-protein (especially, MS(50.50)). While 68.88% of free-extract polyphenols were destroyed after 35 days at 35 °C, the encapsulation process caused retaining 61.79% (M(100)) to 76.69% (MS(50.50)). Overall, due to the appropriate solubility, low moisture, water-activity and the ability to preserve phenolic compounds of date-seed extract, encapsulation in maltodextrin-soy-protein (MS(50.50)) wall materials could be proposed as an efficient and cost-effective bioactive compound to preserve different food products and improve their nutritional value.

کلیدواژه‌ها [English]

  • Kabkab date seed
  • Phenolic compounds
  • Encapsulation
  • Morphology
  • Soy protein concentrate
[1] Urquiaga, I., & Leighton, F. (2000). Plant polyphenol antioxidants and oxidative stress. Biol. Res., 33(2), 55-64.
[2] Trivedi, M. R., Morecroft, M. D., Berry, P. M., & Dawson, T. P. (2008). Potential effects of climate change on plant communities in three montane nature reserves in Scotland, UK. Biol. Conserv., 141(6), 1665-1675.
[3] Copley, M. S., Rose, P. J., Clapham, A., Edwards, D. N., Horton, M. C., & Evershed, R. P. (2001). Detection of palm fruit lipids in archaeological pottery from Qasr Ibrim, Egyptian Nubia. Proc. R. Soc. B: Biol. Sci., 268 (1467), 593-597.
[4] Benton, M. J., & Donoghue, P. C. (2007). Paleontological evidence to date the tree of life. Mol. Biol. Evol., 24(1), 26-53.
[5] Hmidani, A., Bourkhis, B., Khouya, T., Ramchoun, M., Filali-Zegzouti, Y., & Alem, C. (2020). Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon. 6(2), e03436.
[6] Metoui, M., Essid, A., Bouzoumita, A., & Ferchichi, A. (2019). Chemical Composition, Antioxidant and Antibacterial Activity of Tunisian Date Palm Seed. Pol. J. Environ. Stud., 28(1), 1-8.
[7] FAOSTAT. (2021). Dates, World Food and Agriculture - Statistical Yearbook 2021. Rome, Italy: The Food and Agriculture Organization (FAO). Accessed 28 March 2021. Dates.
[8] Ashraf, Z., & Hamidi-Esfahani, Z. (2011). Date and date processing: a review. Food Rev. Int., 27(2), 101-133.
[9] Al-Farsi, M. A., & Lee, C. Y. (2011). Usage of date (Phoenix dactylifera L.) seeds in human health and animal feed. In  Preedy, V.P., Watson, R.R. & Patel, V.V. (Ed.s) Nuts and seeds in health and disease prevention (pp. 447-452). Netherlands: Elsevier.
[10] Maqsood, S., Adiamo, O., Ahmad, M., & Mudgil, P. (2020). Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem., 308, 125522. doi:https://doi.org/10.1016/j.foodchem.2019.125522
[11] Habib, H. M., Platat, C., Meudec, E., Cheynier, V., & Ibrahim, W. H. (2014). Polyphenolic compounds in date fruit seed (Phoenix dactylifera): characterisation and quantification by using UPLC‐DAD‐ESI‐MS. J. Sci. Food Agric., 94(6), 1084-1089.
[12] Al-Farsi, M. A., & Lee, C. Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 108(3), 977-985.
[13] Thouri, A., Chahdoura, H., El Arem, A., Hichri, A. O., Hassin, R. B., & Achour, L. (2017). Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement Altern Med., 17(1), 1-10.
[14] Hasan, M., & Mohieldein, A. 2016. In vivo evaluation of anti diabetic, hypolipidemic, antioxidative activities of Saudi date seed extract on streptozotocin induced diabetic rats. JCDR., 10(3), FF06.
[15] Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 14(3), 217-225.
[16] Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Int. Food Res. J. 132, 109077. doi:https://doi.org/10.1016/j.foodres.2020.109077.
[17] Šaponjac, V. T., Ćetković, G., Čanadanović-Brunet, J., Djilas, S., Pajin, B., Petrović, J., Stajčić, S., & Vulić, J. (2017). Encapsulation of sour cherry pomace extract by freeze drying: Characterization and storage stability. Acta Chim. Slov., 64(2), 283-289.
[18] Khoshnoudi-Nia, S., Sharif, N., & Jafari, S.M. (2022). Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends Food Sci. Technol., 95,  59-74.
[19] Samborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S. Rostamabadi, H., Falsafi, R., Shaddel, R., Akbari-Alavijeh, S., Jafari, M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci. Technol., 108,  297-325.
[20] Comunian, T.A. & Favaro-Trindade, C.S. (2016). Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocoll., 61, 442-457.
[21] Ince, A.E., Sahin, S. & Sumnu, G. (2014). Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J. Food Sci. Technol., 51(10), 2776-2782.
[22] Araujo, C. d. S., Vimercati, W. C., Macedo, L. L., Saraiva, S. H., Teixeira, L. J. Q., da Costa, J. M. G., & Pimenta, C. J. (2022). Encapsulation of phenolic and antioxidant compounds from spent coffee grounds using spray‐drying and freeze‐drying and characterization of dried powders. J. Food Sci., 87(9), 4056-4067.
[23] Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 237, 623-631.
[24] Cai, X., Du, X., Cui, D., Wang, X., Yang, Z., & Zhu, G. (2019). Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll., 91, 238-245.
[25] Esmaeili, F., Hashemiravan, M., Eshaghi, M. R., & Gandomi, H. (2022). Encapsulation of Arctium lappa L. root extracts by spray-drying and freeze-drying using maltodextrin and Gum Arabic as coating agents and it’s application in synbiotic orange-carrot juice. J. Food Meas. Charact, 1-14.
[26] Ahmed, I. A. M., Al Juhaimi, F. Y., Osman, M. A., Al Maiman, S. A., Hassan, A. B., Alqah, H. A., Babiker, E. E., & Ghafoor, K. (2020). Effect of oven roasting treatment on the antioxidant activity, phenolic compounds, fatty acids, minerals, and protein profile of Samh (Mesembryanthemum forsskalei Hochst) seeds. LWT. 131, 109825.
[27] Fikry, M., Yusof, Y. A., M. Al-Awaadh, A., Abdul Rahman, R., Chin, N. L., & Ghazali, H. M. (2019). Antioxidative and quality properties of full-fat date seeds brew as influenced by the roasting conditions. Antioxidants. 8(7), 226.
[28] Pourshoaib, S. J., Ghatrami, E. R., & Shamekhi, M. A. (2022). Comparing ultrasonic-and microwave-assisted methods for extraction of phenolic compounds from Kabkab date seed (Phoenix dactylifera L.) and stepwise regression analysis of extracts antioxidant activity. Sustain. Chem. Pharm. 30, 100871.
[29] Ahmed, A., Arshad, M. U., Saeed, F., Ahmed, R. S., & Chatha, S. A. S. (2016). Nutritional probing and HPLC profiling of roasted date pit powder. PJN., 15(3), 229.
[30] Chen, C. (2003). Evaluation of air oven moisture content determination methods for rough rice. Biosyst. Eng., 86 (4), 447-457.
[31] Høstmark, Ø., & Teigland, S. (2009). Role of Water Activity of Liquid in Controlling Evaporation Rate of Low-Viscosity Liquids. Dry. Technol. 27(10), 1152-1155.
[32] Abdullah, E. C., & Geldart, D. (1999). The use of bulk density measurements as flowability indicators. Powder Technolo., 102(2), 151-165.
[33] Anema, S., Pinder, D., Hunter, R., & Hemar, Y. 2006. Effects of storage temperature on the solubility of milk protein concentrate (MPC85). Food Hydrocoll., 20 (2-3), 386-393.
[34] Der Want, V. (1998). A comparative study of thin coatings of Au/Pd, Pt and Cr produced by magnetron sputtering for FE‐SEM. J. Microsc., 189(1), 79-89.
[35] Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999).  Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol., 299, 152-178.
[36] Altunkaya, A., Hedegaard, R. V., Harholt, J., Brimer, L., Gökmen, V., & Skibsted, L. H. (2013). Oxidative stability and chemical safety of mayonnaise enriched with grape seed extract. Food Funct., 4(11), 1647-1653.
[37] Al Juhaimi, F., Özcan, M. M., Adiamo, O. Q., Alsawmahi, O. N., Ghafoor, K., & Babiker, E. E. (2018). Effect of date varieties on physico‐chemical properties, fatty acid composition, tocopherol contents, and phenolic compounds of some date seed and oils. J. Food Process. Preserv., 42(4), e13584.
[38] Nayak, C. A., & Rastogi, N. K. (2010). Effect of selected additives on microencapsulation of anthocyanin by spray drying. Dry. Technol. 28(12), 1396-1404.
[39] Mansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrason. Sonochem, 63, 104927.
[40] Alifakı, Y. Ö., Şakıyan, Ö., & Isci, A. (2022). Investigation of Storage Stability, Baking Stability, and Characteristics of Freeze-Dried Cranberrybush (Viburnum opulus L.) Fruit Microcapsules. Food Bioproc. Tech., 15 (5), 1115-1132.
[41] Tonon, R. V., Baroni, A. F., Brabet, C., Gibert, O., Pallet, D., & Hubinger, M. D. (2009). Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. J. Food Eng., 94 (3-4), 215-221.
[42] Navarro-Flores, M. J., Ventura-Canseco, L. M. C., Meza-Gordillo, R., Ayora-Talavera, T. d. R., & Abud-Archila, M. (2020). Spray drying encapsulation of a native plant extract rich in phenolic compounds with combinations of maltodextrin and non-conventional wall materials. J. Food Sci. Technol. 57(11), 4111-4122.
[43] Cortés-Rojas, D. F., Souza, C. R. F., & Oliveira, W. P. (2015). Optimization of spray drying conditions for production of Bidens pilosa L. dried extract. Chem Eng Res Des., 93, 366-376.
[44] Grabowski, J., Truong, V.-D., & Daubert, C. (2008). Nutritional and rheological characterization of spray dried sweetpotato powder. LWT-Food Sci. Technol. 41(2), 206-216.
[45] Murali, S., Kar, A., Mohapatra, D., & Kalia, P. (2015). Encapsulation of black carrot juice using spray and freeze drying. FSTI., 21(8), 604-612.
[46] Papoutsis, K., Golding, J. B., Vuong, Q., Pristijono, P., Stathopoulos, C. E., Scarlett, C. J., & Bowyer, M. (2018). Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-Carrageenan. Foods, 7(7), 115.
[47] González-Ortega, R., Faieta, M., Di Mattia, C. D., Valbonetti, L., & Pittia, P. (2020). Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. J. Food Eng., 285, 110089.
[48] Sassi, C. B., Marcet, I., Rendueles, M., Díaz, M., & Fattouch, S. (2020). Egg yolk protein as a novel wall material used together with gum Arabic to encapsulate polyphenols extracted from Phoenix dactylifera L pits. LWT., 131, 109778.
[49] Šturm, L., Črnivec, I. G. O., Istenič, K., Ota, A., Megušar, P., Slukan, A., Humar, M., Levic, S., Nedović, V., & Deželak, M. (2019). Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food Bioprod. Process., 116, 196-211.
[50] Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol., 85, 379-385.
[51] Dadi, D. W., Emire, S. A., Hagos, A. D., & Eun, J.-B. (2020). Physical and functional properties, digestibility, and storage stability of spray-and freeze-dried microencapsulated bioactive products from moringa stenopetala leaves extract. Ind. Crops Prod., 156, 112891.
[52] Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technolo., 311, 77-87.
[52] Souza, A. C. P., Gurak, P. D., & Marczak, L. D. F. (2017). Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Bioprod. Process. 102, 186-194.
[53] Jafari, S.-M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydr. Polym., 140, 20-25.