پیش‌بینی فرآیند انتقال جرم در خشک کردن اسمزی انجیر سیاه در سیستم سه گانه: مقایسه روش سطح پاسخ و شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی مرکز تحقیقات و آموزش کشاورزی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی

2 بخش فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران.

3 بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

خشک کردن اسمزی میوه‌های انجیر در محلول سه‌تایی آب، ساکارز و کلرید سدیم در غلظت‌های مختلف محلول، دما و مدت زمان‌های مختلف فرآیند مورد بررسی قرار گرفت. یک رویکرد مقایسه ای بین شبکه عصبی مصنوعی (ANN) و روش سطح پاسخ (RSM) برای پیش‌بینی پارامترهای انتقال جرم انجام شد. نتایج نشان داد که تمامی متغیرهای مستقل به طور مثبت وزن را کاهش دادند به این معنی که افزایش هر یک از عوامل منجر به افزایش کاهش وزن شد و این رابطه خطی بود. انجیرهای خشک شده به روش اسمزی کیفیت بهتری نسبت به نمونه های بدون اسمز داشتند. هر چهار متغیر مستقل 94 درصد کاهش وزن، 90 درصد کاهش رطوبت و 89 درصد افزایش جامد را شرح دادند. شرایط بهینه فرآوری دمای 60 درجه سانتی گراد، غلظت ساکارز 70 درصد، غلظت کلرید سدیم 5 درصد و زمان غوطه وری 5 ساعت بود. نتایج نشان داد که مدل ANN که به درستی آموزش داده شده است در مقایسه با مدل RSM پیش‌بینی دقیق‌تری را انجام می دهد.

چکیده تصویری

پیش‌بینی فرآیند انتقال جرم در خشک کردن اسمزی انجیر سیاه در سیستم سه گانه: مقایسه روش سطح پاسخ و شبکه عصبی مصنوعی

تازه های تحقیق

  • استفاده از یک محلول اسمزی سه جرئی انتقال جرم در مقایسه با یک محلول دو جزئی انتقال جرم را افزایش می‌دهد؛ بنابراین این روش برای کاربرد در صنعت پیشنهاد می‌شود.
  • شرایط بهینه برای خشک‌کردن اسمزی انجیر دمای 60 درجه سلسیوس، غلظت 70 درصد سوکروز، غلظت 5 درصد نمک و زمان غوطه‌وری 5 ساعت می‌باشد.
  • مدل شبکه عصبی مصنوعی در پیش‌بینی تغییرات ML، WR و SG نسبت به روش سطح پاسخ عملکرد بهتری دارد.
  • یک مدل آموزش دیده در پیش‌بینی پارامترهای فرآیند دقیق‌تر عمل می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of Mass Transfer during Osmotic Dehydration of Black Fig Fruits (Ficus carica) in Ternary Systems: Comparison of Response Surface Methodology and Artificial Neural Network

نویسندگان [English]

  • Neda Maftoonazad 1
  • Akbar Jokar 2
  • Mashalla Zare 3
1 Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Fars Province, Iran
2 Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Fars, Shiraz, Iran.
3 AREEO
چکیده [English]

Osmotic dehydration of fig fruits (cv. Sabz) in ternary solution of water, sucrose and sodium chloride at different solution concentrations, temperature and process durations were analyzed. A comparative approach was made between artificial neural network (ANN) and response surface methodology (RSM) to predict the mass transfer parameters. Results showed that all independent variables positively decreased the weight meaning that increasing each factor resulted in increasing weight loss and this relationship was linear. Osmo-dehydrated figs had better quality compared to samples without osmosis. All four independent variables explained 94% of the weight loss, 90% moisture content reduction and 89% of the solid gain. The determined optimum processing conditions were temperature of 60°C, sucrose concentration of 70%, sodium chloride concentration of 5% and immersion time of 5h. The results showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.

کلیدواژه‌ها [English]

  • Fig (Ficus carica)"
  • Osmotic dehydration"
  • Artificial neural networks"
  • Response surface methodology"
  • Moisture loss"
  • "
  • Solute gain"
  1. Crisosto, H., et al., Fig (Ficus carica L.), in Postharvest biology and technology of tropical and subtropical fruits. 2011, Elsevier. p. 134-160e.
  2. Agricultural statistics, Horticultural products. 2021, Ministry of Jihad and Agriculture, Planning and Economic Deputy, Information and Communication Technology Center [In Persian].
  3. Complexity, T.O.o.E. https://oec.world/. 2020.
  4. Romero, I.P., et al., Optimization of the osmotic dehydration process of plums (Prunus Salicina Lindl.) in solutions enriched with inulin, using response surface methodology. LWT, 2022. 157: p. 113092.
  5. Rodrigues, S. and F.A.N. Fernandes, Dehydration of melons in a ternary system followed by air-drying. Journal of Food Engineering, 2007. 80(2): p. 678-687.
  6. Dhiman, S., et al., Osmotic dehydration of mulberry: Effect of pretreatment and processing conditions on the quality attributes. Applied Food Research, 2022. 2(2): p. 100172.
  7. Jahedi Rad, S., et al., Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat and Mass Transfer, 2018. 54: p. 3361-3374.
  8. Yu, Y., et al., Biochemical degradation and physical migration of polyphenolic compounds in osmotic dehydrated blueberries with pulsed electric field and thermal pretreatments. Food chemistry, 2018. 239: p. 1219-1225.
  9. Prithani, R. and K.K. Dash, Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 2020. 64: p. 102407.
  10. Tsamo, C.V.P., et al., Study of material transfer during osmotic dehydration of onion slices (Allium cepa) and tomato fruits (Lycopersicon esculentum). LWT - Food Science and Technology, 2005. 38(5): p. 495-500.
  11. Bozkir, H., et al., Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics sonochemistry, 2019. 54: p. 135-141.
  12. Rahaman, A., et al., Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrasonics sonochemistry, 2019. 58: p. 104643.
  13. Feng, Y., et al., Vacuum pretreatment coupled to ultrasound assisted osmotic dehydration as a novel method for garlic slices dehydration. Ultrasonics sonochemistry, 2019. 50: p. 363-372.
  14. Kiani, H., et al., A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes. Ultrasonics Sonochemistry, 2018. 44: p. 171-176.
  15. Giannakourou, M.C., A.E. Lazou, and E.K. Dermesonlouoglou, Optimization of osmotic dehydration of tomatoes in solutions of non-conventional sweeteners by response surface methodology and desirability approach. Foods, 2020. 9(10): p. 1393.
  16. Landim, A.P.M., M.I.M.J. Barbosa, and J.L.B. Júnior, Influence of osmotic dehydration on bioactive compounds, antioxidant capacity, color and texture of fruits and vegetables: a review. Ciência Rural, 2016. 46: p. 1714-1722.
  17. Nagai, L.Y., et al., Osmotic dehydration of mango with ascorbic acid impregnation: influence of process variables. Journal of Food Processing and Preservation, 2015. 39(4): p. 384-393.
  18. Jiménez-Hernández, J., et al., Osmotic dehydration of mango with impregnation of inulin and piquin-pepper oleoresin. LWT-Food Science and Technology, 2017. 79: p. 609-615.
  19. Ferrari, C.C. and M.D. Hubinger, Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes. International journal of food science & technology, 2008. 43(11): p. 2065-2074.
  20. Singh, B., et al., Optimisation of osmotic dehydration of carrot cubes in sucrose-salt solutions using response surface methodology. European Food Research and Technology, 2007. 225(2): p. 157-165.
  21. Ahmed, I., I.M. Qazi, and S. Jamal, Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 2016. 34: p. 29-43.
  22. Ozdemir, M., et al., Optimization of osmotic dehydration of diced green peppers by response surface methodology. LWT - Food Science and Technology, 2008. 41(10): p. 2044-2050.
  23. de Oliveira, L.F., et al., Osmotic dehydration of yacon (Smallanthus sonchifolius): Optimization for fructan retention. LWT - Food Science and Technology, 2016. 71: p. 77-87.
  24. da Costa Ribeiro, A.S., E. Aguiar-Oliveira, and R.R. Maldonado, Optimization of osmotic dehydration of pear followed by conventional drying and their sensory quality. LWT - Food Science and Technology, 2016. 72: p. 407-415.
  25. Tonon, R.V., A.F. Baroni, and M.D. Hubinger, Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. Journal of Food Engineering, 2007. 82(4): p. 509-517.
  26. Rahman, S., P. Sharma, and Z. Said, Application of Response Surface Methodology Based D-Optimal Design for Modeling and Optimisation of Osmotic Dehydration of Zucchini. Digital Chemical Engineering, 2022. 4: p. 100039.
  27. Maldonado, M. andJ.G. Pacheco, Mathematical modelling of mass transfer phenomena for sucrose and lactitol molecules during osmotic dehydration of cherries. Heliyon, 2022. 8(1): p. e08788.
  28. El-Aouar, Â.A., et al., Influence of the osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering, 2006. 75(2): p. 267-274.
  29. Mercali, G.D., et al., Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT - Food Science and Technology, 2011. 44(1): p. 82-91.
  30. Abud-Archila, M., et al., Optimization of osmotic dehydration of yam bean (Pachyrhizus erosus) using an orthogonal experimental design. Journal of Food Engineering, 2008. 84(3): p. 413-419.
  31. Prakash Maran, J., et al., Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alexandria Engineering Journal, 2013. 52(3): p. 507-516.
  32. Lertworasirikul, S. and S. Saetan, Artificial neural network modeling of mass transfer during osmotic dehydration of kaffir lime peel. Journal of Food Engineering, 2010. 98(2): p. 214-223.
  33. Ochoa-Martinez, C. and A. Ayala-Aponte, Prediction of mass transfer kinetics during osmotic dehydration of apples using neural networks. LWT-Food Science and Technology, 2007. 40(4): p. 638-645.
  34. Aghbashlo, M., S. Hosseinpour, and A.S. Mujumdar, Application of artificial neural networks (ANNs) in drying technology: a comprehensive review. Drying technology, 2015. 33(12): p. 1397-1462.
  35. Maftoonazad, N., Badii, F., Shahamirian, M., Mirmajidi, A., Zare, H. and Jokar, L. , Using osmotic dehydration and hot air to produce intermediate moisture fig. 2013, Publication of Agricultural Research, Education and Extension Organization. No. 43548 [In persian].
  36. Myers, R.H., D.C. Montgomery, and C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments. 2016: John Wiley & Sons.
  37. Lertworasirikul, S., Drying kinetics of semi-finished cassava crackers: A comparative study. LWT - Food Science and Technology, 2008. 41(8): p. 1360-1371.
  38. Singh, B., et al., Optimisation of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. Food Chemistry, 2010. 123(3): p. 590-600.
  39. Ramaswamy, Osmotic drying: principles, techniques and modeling, in In Proceeding of the 5th Asia-Pasific Drying conference. 2007: Hong Kong. p. 49-51.
  40. Falade, K.O., J.C. Igbeka, and F.A. Ayanwuyi, Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 2007. 80(3): p. 979-985.
  41. Antonio, G.C., et al., Influence of osmotic dehydration and high temperature short time processes on dried sweet potato (Ipomoea batatas Lam.). Journal of Food Engineering, 2008. 84(3): p. 375-382.
  42. İspir, A. and İ.T. Toğrul, Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 2009. 87(2): p. 166-180.
  43. Mundada, M., B.S. Hathan, and S. Maske, Mass transfer kinetics during osmotic dehydration of pomegranate arils. Journal of food science, 2011. 76(1): p. E31-E39.
  44. Konopacka, D., et al., The effect of different osmotic agents on the sensory perception of osmo-treated dried fruit. The Journal of Horticultural Science and Biotechnology, 2009. 84(6): p. 80-84.
  45. Vilela, A., et al., Texture quality of candied fruits as influenced by osmotic dehydration agents. Journal of Texture Studies, 2016. 47(3): p. 239-252.
  46. Aydani, E., et al., Optimization of orange osmotic dehydration process using response surface method and estimation of dehydration parameters by Artificial Neural Network. Iranian Food Science and Technology Research Journal, 2013. 9(3).
  47. Azadbakht, M., et al., Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices. Energy, 2018. 165: p. 836-845.
  48. Mokhtarian, M. and H. Tavakolipour, The application of neural network method for the prediction of the osmotic factors of crookneck squash. 2016.
  49. Morais, R.A., D.G. Alves, and W.G. Da Silva, Use of artificial neural network to optimize osmotic dehydration process of cashew from cerrado (Anacardium occidentale). International Journal of Computer Applications, 2016. 975: p. 8887.
  50. Bahmani, A., et al., Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. Journal of food processing and preservation, 2016. 40(5): p. 815-827.
  51. Mokhtarian, M., et al., Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Quality Assurance and Safety of Crops & Foods, 2014. 6(2): p. 201-214.
  52. Ćurčić, B.L., et al., Osmotic treatment of fish in two different solutions‐artificial neural network model. Journal of food processing and preservation, 2015. 39(6): p. 671-680.