[1] Özcan, M., Hacıseferoğulları, H., Marakoğlu, T. & Arslan, D. (2005). Hawthorn (Crataegus spp.) fruit: some physical and chemical properties. J Food Eng, 69(4), 409-413.
[2] Erfani Moghadam1*, J. & Kheiralipour, K. (2015). Physical and nutritional properties of hawthorn fruit (Crataeguspontica L.). AgricEngInt: CIGR J, 17(1), 232-237.
[3] Kao, E. S., Wang, C. J., Lin, W. L., Yin, Y. F., Wang, C. P. & Tseng, T. H. (2005). Anti-inflammatory potential of flavonoid contents from dried fruit of Crataegus pinnatifida in vitro and in vivo. J Agric Food Chem , 53(2), 430-436.
[4] Chang, W. T., Dao, J. & Shao, Z. H. (2005). Hawthorn: potential roles in cardiovascular disease. The Am. J. Chin. Med, 33(01), 1-10.
[5] Pittler, M. H., Schmidt, K. & Ernst, E. (2003). Hawthorn extract for treating chronic heart failure: meta-analysis of randomized trials. The Am. J. Chin. Med, 114(8), 665-674.
[6] Jahanbakhshi, A. & Kheiralipour, K. )2019(. Carrot Sorting Based on Shape using Image Processing, Artificial Neural Network, and Support Vector Machine. J AGR Machine, 9(2): 295-307. (In Persain).
[7] Teimouri, N., Omid, M., Mollazade, K., Mousazadeh, H., Alimardani, R., & Karstoft, H. (2018). On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach. Biosyst Eng, 167, 8-20.
[9] Kheiralipour, K. & Kazemi, A. 2020. A new method to determine morphological properties of fruits and vegetables by image processing technique and nonlinear multivariate modeling. Int J Food Prop, 23(1), 368-374.
[10] Farokhzad, S., Motlagh, A.M., Moghadam, P.A., Honarmand, S.J. & Kheiralipour, K. (2020). Application of infrared thermal imaging technique and discriminant analysis methods for non-destructive identification of fungal infection of potato tubers. J Food Measure Charac, 14 (1), 88-94.
[11] Wang, A., Zhang, W., & Wei, X. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Comput Electron Agric, 158, 226-240.
[12] Liming, X. & Yanchao, Z. (2010). Automated strawberry grading system based on image processing Author links open overlay panel. Comput Electron Agric, 71, S32-S39.
[13] Seng, W. C., & Mirisaee, S. H. (2009, August). A new method for fruits recognition system. In 2009 Int Con Elec ENG (Vol. 1, pp. 130-134). IEEE.
[14] Sofu, M. M., Er, O., Kayacan, M. C., & Cetişli, B. (2016). Design of an automatic apple sorting system using machine vision. Comput Electron Agric, 127, 395-405.
[15] Mizushima, A. & Lu, R. (2013). An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Comput Electron Agric, 94, 29-37.
[16] Zandi, M., Ganjloo, A. & Bimakr. M. (2020). Development of quality grading system based on image processing for hawthorn classification during various storage condition (cold, refrigerator and room). J Food Res, 30(1): 195-210.
[17] Sonka, M., Hlavac, V. & Boyle, R. (2014). Image process anal mach visi. (4th ed) Cengage Learning. Boston, Massachusetts, US: Springer.
[18] Mohammadi, V., Kheiralipour, K. & Ghasemi-Varnamkhasti, M. (2015). Detecting maturity of persimmon fruit based on image processing technique. Sci Hortic, 184, 123-128.
[19] Kheiralipour, K. & Pormah, A. 2017. Introducing new shape features for classification of cucumber fruit based on image processing technique and artificial neural networks. J Food Process Eng, 40(6), 12558.
[20] Khazaee, Y., Kheiralipour, K., Hosainpour, A. & Javadikia, H. (2019). Development of an algorithm based on image processing technique and sport vector machine to distinct potato from clod and stone. J Res Mech Agri, 8(1), 1-11. (In Persian).
[21] Gonzalez, R. C., & Woods, R. E. (2002). Digit Image Process (2nd ed). New Jersey: Prentice Hall Inc.
[22] Kheiralipour, K. (2012). Implementation and construction of a system for detecting fungal infection of pistachio kernel based on thermal imaging (TI) and image processing technology. Ph.D. Dissertation. Karaj, Iran: Uni Tehran. [In Persian].
[23] Mollazade, K., Omid, M., Tab, F. A., Kalaj, Y. R., Mohtasebi, S. S., & Zude, M. (2013). Analysis of texture-based features for predicting mechanical properties of horticultural products by laser light backscattering imaging. Comput Electron Agric, 98, 34-45.
[24] Salam, S. & Kheiralipour, K. (2021). Development and evaluation of chickpea classification system based on visible image processing technology and artificial neural network. Innov Food Tech, 9(2), 181-193.
[25] Kheiralipour, K., & Marzbani, F. (2016). Pomegranate quality sorting by image processing and artificial neural network. 10th Iranian National Congress on AGR Machi Eng (Biosystems) and Mechanizasion. 30-31 August, Mashhad, Iran. [In Persian].
[26] Azadnia, R, & Kheiralipour, K. (2021). Recognition of leaves of different medicinal plant species using a robust image processing algorithm and artificial neural networks classifier. J Appl Res Med Aromat Plants, 100327.
[27] Chandrashekar, G. & Sahin, F. (2014). A survey on feature selection methods. Comput Electron Agric, 40(1), 16-28.
[28] Dixon, S. J., Heinrich, N., Holmboe, M., Schaefer, M. L., Reed, R. R., Trevejo, J. & Brereton, R. G. (2009). Application of classification methods when group sizes are unequal by incorporation of prior probabilities to three common approaches: Application to simulations and mouse urinary chemosignals. Chemometrics and Intelligent Laboratory Systems, 99(2), 111-120.
[29] Wu, W., Mallet, Y., Walczak, B., Penninckx, W., Massart, D. L., Heuerding, S. & Erni, F. (1996). Comparison of regularized discriminant analysis linear discriminant analysis and quadratic discriminant analysis applied to NIR data. Anal Chim Acta, 329(3), 257-265.
[30] Aggarwal, N. & Agrawal, R. K. (2012). First and second order statistics features for classification of magnetic resonance brain images. J Signal Process Syst, 3, 146-153.
[31] El-Bendary, N., El Hariri, E., Hassanien, A. E. & Badr, A. (2015). Using machine learning techniques for evaluating tomato ripeness. Expert Syst Appl, 42(4), 1892-1905.
[32] Nasiri, A., Taheri-Garavand, A., & Zhang, Y. D. (2019). Image-based deep learning automated sorting of date fruit. Postharvest Biol Technol, 153, 133-141.
[33] Saranya, N., Srinivasan, K. & Kumar, S. P. (2021). Banana ripeness stage identification: a deep learning approach. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-021-03267-w.