[1] Mohammed, H. H. H., Jin, G., Ma, M., Khalifa, I., Shukat, R., Elkhedir, A. E., Zeng, Q. & Noman, A. E. (2020). Comparative characterization of proximate nutritional compositions, microbial quality and safety of camel meat in relation to mutton, beef, and chicken. LWT - Food Sci. Technol., 118, 108714 (1-7).
[2] Ali, A., Baby, B., & Vijayan, R. (2019). From desert to medicine: a review of camel genomics and therapeutic products. Front. genet., 10 (17), 1-20.
[3] Baba, W. N., Rasool, N., Selvamuthukumara, M., & Maqsood, S. (2021). A review on nutritional composition, health benefits, and technological interventions for improving consumer acceptability of camel meat: an ethnic food of Middle East. J. Ethn. Foods, 8(1), 1-13.
[4] Dowlati, M., de la Guardia, M., & Mohtasebi, S. S. (2012). Application of machine-vision techniques to fish-quality assessment. TrAC Trends Anal. Chem., 40, 168-179.
[5] Rahman, M.F., Abdullah Iqbal, M., Hashem, A. & Adedeji, A.A. (2020). Quality Assessment of Beef Using Computer Vision Technology. Food Sci. Anim. Resour., 40(6), 896-910.
[6] Singh, T. P., & Chatli., M. K. (2013). Advances in computer vision technology for foods of animal and aquatic origin. J. Meat Sci. Technol.. 1(2), 40-49.
[7] Xiong, Z., Sun, D.W., Pu, H., Xie, A., Han, Z. & Luo, M. (2015). Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chem., 179, 175–181.
[8] Lawrie, R.A. (2006). Lawrie’s Meat Science (7th ed.). Woodhead Publishing Limited, Cambridge, Uk.
[9] Multan, W. K., Ali, S. K., Aydam, Z. M., & Taher, B. H. (2020). Feature Extraction Methods: A Review. In Journal of Physics: Conf. Ser. (Vol. 1591, No. 1, p. 012028). IOP Publishing.
[10] Long, F., Zhang, H., & Feng, D. D. (2003). Fundamentals of content-based image retrieval. In: D. Feng, W. C. Siu, & H. J. Zhang, (Eds.) Multimedia information retrieval and management (pp. 1-26). Springer, Berlin, Heidelberg.
[11] Nekoie, N., Dowlati, M. & Golpour, I. (2016). Identification and classification of persian Cumin (Bunium persicum Boiss) landraces using image processing in combination with artificial neural networks. J. Res. Mech. Agric. Mach., 5(8), 37. [In Persian]
[12] Shiranita, K., Hayashi, K., Otsubo, A., Miyajima, T. & Takiyama, R. (2000). Grading meat quality by image processing. Pattern Recognit., 33, 97-104.
[13] Chmiel, M., Slowinski, M. & Dasiewiez, K. (2011). Application of computer vision systems for estimation of fat content in poultry meat. Food Control 22(8), 1424-1427.
[14] Dousti Irani, A. & Golzarian, M.R. (2013). Design and evaluation of image processing algorithm for estimating red meat fat content. In 8th Natl. Congr. Agric. Mach. Eng. (Biosyst.) Mech. Iran. (pp. 3036-3046), Ferdowsi University of Mashhad. [In Persian]
[15] Putra, G. B., & Prakasa, E. (2020). Classification of Chicken Meat Freshness using Convolutional Neural Network Algorithms. In Int. Conf. Innov. Intell. Inform. Comput. Technol. (3ICT) (pp. 1-6). IEEE.
[16] Taheri-Garavand, A., Fatahi, S., Omid, M., & Makino, Y. (2019). Meat quality evaluation based on computer vision technique: A review. Meat sci., 156, 183-195.
[17] Penning, B. W., Snelling, W. M., & Woodward-Greene, M. J. (2020). Machine learning in the assessment of meat quality. IT Prof., 22(3), 39-41.
[18] Neelamma, K . P., Virendra, S . M. & Ravi, M.Y. (2011) .Color and texture based identification and classification of food Grains using different Color Models and Haralick features. IJCSE. 3(12), 3669-3680.
[19] Golpour, I. (2012). Predicting, diagnosing and investigating the drying kinetics of rice cultivars using image processing and artificial neural networks. Master thesis in Biosystem mechanics. School of Agriculture, Bu-Ali Sina University. [In Persian]
[20] AOAC International 2002. Official methods of analysis, end, AOAC International, Arlington.
[21] Dowlati, M., Mohtasebi, S. S., Omid, M., Razavi, S. H., Jamzad, M., & De La Guardia, M. (2013). Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. J. Food Eng., 119(2), 277-287.
[22] Sheibani tazrachi, A. (2015). Detection of quality and grading of ostrich meat using artificial technique. Master thesis Biosyst. mech., Sch. Agric. Jiroft Univ., [In Persian]
[23] Jouki, M. & Khazaei, N. (2012). Color and oxidation changes in camel meat during storage. Int. J. Pharma and Bio Sci., 3(1), 164-170.
[24] Liao, Q., Wei, C., Li, Y., & Ouyang, H. (2021). Developing a Machine Vision System Equipped with UV Light to Predict Fish Freshness Based on Fish-Surface Color. Food Nutr. Sci., 12(3), 239-248.
[25] Lu, J., Tan, J., Shatadal, P. & Gerrard, D. (2000). Evaluation of pork color by using computer vision. Meat Sci., 56(1), 57-60.
[26] Bacus, J. A. (2021). Identification of Pork Meat Freshness Using Neural Networks. In 2021 IEEE: Int. Conf. Electron. Technol. Commun. Inf. (ICETCI) (pp. 402-405).