ارزیابی ویژگیهای کلوئیدی و آنتی اکسیدانی نانولیپوزوم های حاوی عصاره گزنه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، علوم و صنایع غذایی، دانشگاه تبریز

2 استاد، علوم و صنایع غذایی، دانشگاه تبریز

3 دانشیار، دانشگاه علوم پزشکی تبریز

4 دانشجوی دکترا، دانشگاه علوم پزشکی تبریز

5 دانشیار، علوم و صنایع غذایی، دانشگاه تبریز

چکیده

درون‌پوشانی ترکیبات فنولیک، به عنوان آنتی‌اکسیدان‌های طبیعی، یکی از راه‌های جلوگیری از اکسیداسیون و بهبود جذب آن‌ها در بدن است. لیپوزوم‌ها ذرات کلوئیدی متشکل از لیپیدهای قطبی هستند که به علت داشتن بخش‌های آبدوست و لیپیدی، در به دام انداختن، تحویل و آزادسازی ترکیبات آب‌دوست، چربی‌دوست و آمفی‌فیلیک می توانند بکار گرفته شوند هدف از این پژوهش، بررسی قابلیت لیپوزوم ها در درون پوشانی عصاره گزنه و ارزیابی ویژگی‌های کلوئیدی و آنتی‌اکسیدانی نانولیپوزوم‌های حاوی عصارۀ گزنه است. نانولیپوزوم‌های حاوی عصارۀ گزنه با استفاده از نسبت‌های متفاوت لستین-کلسترول (0-60، 10-50، 20-40، 30-30 میلی‌گرم) معادل (8-0، 7-3، 5-5 و 4-8 میلی مولار) و به روش هیدراسیون لایه نازک و سونیکاسیون تولید شدند. آزمون‌های تعیین اندازه ذرات، کارآیی درون پوشانی، پایداری کپسولاسیون، خاصیت آنتی‌اکسیدانی و میزان کدورت مورد ارزیابی قرار گرفتند. اندازه ذرات و توزیع اندازه ذرات به ترتیب در محدوده 94-81 نانومتر و 88/0-81/0 بود. بیشترین میزان کارآیی کپسولاسیون در فرمولاسیون بدون کلسترول با مقدار 56/2±83/65% حاصل شد. درصد احیاکنندگی رادیکال‌های 2و2-دی فنیل-1- پیکریل-هیدرازیل (DPPH) در عصارۀ آزاد و کپسوله تفاوت معنی‌داری نداشت. بعلاوه زمان نگهداری تأثیر معنی-داری روی پایداری درون پوشانی نانولیپوزوم‌ها ایجاد نکرد و نمونه‌ها در طول زمان نسبت به رهایش مقاوم بودند. همچنین افزایش غلظت کلسترول باعث افزایش میزان کدورت از 7/11- به 2/21- گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Colloidal and Antioxidant Properties of Nanoliposome Loaded with Urtica dioica L. Extract

نویسندگان [English]

  • Sara Haghjoo 1
  • Babak Ghanbarzadeh 2
  • Hamed Hamishekar 3
  • Solmaz Asni Ashari 4
  • Jalal Dehghannia 5
1 MSc Student, Food Science and Technology, Tabriz University
2 Professor, Food Science and Technology, Tabriz University
3 Associate Professor, Medical Sciences of Tabriz University
4 Associate Professor, Medical Sciences of Tabriz University
5 Associate Professor, Food Science and Technology, Tabriz University
چکیده [English]

Encapsulation of phenolic compounds as natural antioxidants is one of the ways in order to inhibit oxidation and to improve their absorption. Liposomes are colloidal vesicles comprised of polar lipids which can be used to entrap hydrophilic, hydrophobic and amphipathic compounds. The main objective of this study is to evaluate the capability of liposomes to encapsulate Urtica dioica L. extract and determine colloidal and antioxidant properties of Urtica dioica extract loaded nanoliposomes. In this study nanoliposomes containing Urtica dioica L. extract were prepared from ­various quantities of phosphatidyl­choline­ (PC) and cholesterol included (60-0, 50-10, 40-20, 30-30 miligeram)  Equivalent (8-0, 7-3, 5-5, 4-8 mili molar) by thin-film hydration­ and sonication method. Experiments including particle size, encapsulation efficiency, antioxidant activity, encapsulation stability and turbidity were determined. The particle size and size distribution (span) data were in the range of 81-94 nm, and 0.81- 0.88, respectively. The effect of various concentrations of lecithin-cholesterol on the size of nanoliposomes was insignificant (P

کلیدواژه‌ها [English]

  • Encapsulation
  • nanoliposome
  • Phenolic compounds
  • Urtica dioica
  1. Bozkurt, H. (2006). Utilization of natural antioxidants: Green tea extract and (i) Thymbra spicata (i) oil in Turkish dry-fermented sausage. Meat Sci., 73(3):442-50.
  2. Komes, D., Belščak‐Cvitanović, A., Horžić, D., Rusak, G., Likić, S., Berendika, M. (2011). Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Phytochem Anal., 22(2):172-80.
  3. Rispail, N., Morris, P., Webb, KJ. (2005). Phenolic compounds: extraction and analysis. Lotus Japonicus Handbook: Springer., 349-54.
  4. Kavalalı, G., Tuncel, H., Göksel, S., Hatemi, H. (2003). Hypoglycemic activity of (i) Urtica pilulifera (/i) in streptozotocin-diabetic rats. J Ethnopharmacol., 84(2):241-5.
  5. Gülçin, I., Küfrevioǧlu, Öİ., Oktay, M., Büyükokuroǧlu, ME. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle ((i) Urtica dioica (/i) L.). J Ethnopharmacol., 90(2):205-15.
  6. Chahardehi, AM., Ibrahim, D., Sulaiman, SF. (2009). Antioxidant Activity and Total Phenolic Content of Some Medicinal Plants in Urticaceae Family. J Appl Biol SCi., 3(2).
  7. Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends Food Sci Tech., 21(10):510-23.
  8. Keller, BC. (2001). Liposomes in nutrition. Trends Food Sci Tech., 12(1):25-31.
  9. Mozafari, MR. (2005). Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett., 10(4):711.
10. Munin, A., Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharm., 3(4):793-829.

11. Gortzi, O., Lala, S., Chinou, I., Tsaknis, J. (2007). Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules., 12(5):932-45.

12. Gortzi, O., Lalas, S., Chinou, I., Tsaknis, J. (2008). Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur Food Res Technol., 226(3):583-90.

13. Belščak-Cvitanović, A., Stojanović, R., Manojlović, V., Komes, D., Cindrić, I.J, Nedović V, et al. (2011). Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int., 44, 1094-1101.

14. Tsai, W.C., Li, W.C., Yin, H.Y., Yu, M.C., Wen, H.W. (2012). Constructing liposomal nanovesicles of ginseng extract against hydrogen peroxide-induced oxidative damage to L929 cells. Food Chem., 132(2):744-51.

15. Modarresi-Chahardehi, A., Ibrahim, D., Fariza-Sulaiman, S., Mousavi, L. (2012). Screening antimicrobial activity of various extracts of Urtica dioica. Revista de Biología Tropical., 60(4):1567-76.

16. Kirby, C., Gregoriadis, G. (1984). Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Nat Biotechnol., 2(11):979-84.

17. Xia, S., Xu, S. (2005). Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res Int., 38(3):289-96.

18. Marsanasco, M., Márquez, AL., Wagner, JR., del V Alonso, S., Chiaramoni, NS. (2011). Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res Int., 44(9):3039-46.

19. González-Paredes, A., Clarés-Naveros, B., Ruiz-Martínez, MA., Durbán-Fornieles, J.J., Ramos-Cormenzana, A., Monteoliva-Sánchez, M. (2011). Delivery systems for natural antioxidant compounds: Archaeosomes and archaeosomal hydrogels characterization and release study. Int J Pharm., 421(2):321-31.

20. Delazar, A., Lotfipour, F., Nazemiyeh, H. (2012). Antioxidant and Antimicrobial activity of Pedicularis sibthorpii Boiss. And Pedicularis wilhelmsiana Fisch ex. Adv pharm bull., 2(1):89-92.

21. Fatouros, DG., Antimisiaris, SG. (2002). Effect of amphiphilic drugs on the stability and zeta-potential of their liposome formulations: a study with prednisolone, diazepam, and griseofulvin. J Colloid Interface Sci., 251(2):271-7.

22. Chanda, H., Das, P., Chakraborty, R., Ghosh, A. (2011). Development and Evaluation of Liposomes of Fluconazole. J Pharm Biomed Sci., 5(05):1-9.

23. Alexander, M., Acero Lopez, A., Fang, Y. and Corredig, M. 2012. Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. Food Sci and Technol. 47: 427-436.

24. Mozafari, MR., Khosravi-Darani, K., Borazan, GG., Cui, J., Pardakhty, A., Yurdugul, S. (2008). Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop., 11(4):833-44.

25. Maherani, B., Arab-Tehrany, E.R, Mozafari, M., Gaiani, C., Linder, M. (2011). Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanosci., 7(3):436-52.

26. Malheiros, PdS., Sant'Anna, V., Barbosa, MdS., Brandelli, A., Franco, BDGdM. (2012). Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on (i) Listeria monocytogenes (/i) growth in Minas frescal cheese. Int J Food Microbiol., 156(3). 272-277.

27. Gopinath, D., Ravi, D., Rao, B., Apte, S., Renuka, D., Rambhau, D. (2004). Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. Int J Pharm., 271(1):95-113.

28. Mohammadi, M., Ghanbarzadeh, B., Hamishehkar, H., Rezaei Mokarram, R., Mohammadifar, M A. (2014). Study of physical properties of vitamin D3-loaded nanoliposomes, prepared by thin layer hydration- sonication method. Iranian J Nutr Sci Food Tech., 8(4) :175-188 [in Persian].

29. Liu, N. , Park. H. J. (2010).Factors effect on the loading efficiency of Vitamin C loadedchitosan-coated nanoliposomes Colloids and Surfaces B: Biointerfaces, 76:  16–19.

30. Laridi, R., Kheadr, E., Benech, R.O, Vuillemard, J., Lacroix, C., Fliss, I. (2003). Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J., 13(4):325-36.

31. Sharma, A., Sharma, US. (1997). Liposomes in drug delivery: progress and limitations. Int J Pharm., 154(2):123-40.

32. Szcześ, A. (2013). Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate. Colloid Surface B., 101:44-8.

33. Makino, k., Yamada, T., Kimura, M., Oka, T., Ohshima, H., and Kondo, T. )1991(. Temperature and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophys Chem., 41:75-183.

34. Gregoriadis, G., Davis, C. (1979). Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem Biophysical Res commun., 89(4):1287-93.

35. Brandl, M. (2001). Liposomes as drug carriers: a technological approach. Biotechnol Annu Rev., 7:59-85.

36. Rasti, B., Jinap, S., Mozafari, M., Yazid, A. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chem., 135(4):2761-70.

37. Zalba, S., Navarro, I., Trocóniz, IF., Tros de Ilarduya, C., Garrido, M.J. (2012). Application of different methods to formulate PEG-liposomes of oxaliplatin: Evaluation (i) in vitro(/i) and ( i) in vivo (/i). Eur J Pharm Biopharm., 81(2):273-80.