[1] Feng, C., Zhang, M., & Bhandari B. (2018). Materials properties of printable edible inks and printing parameters optimization during 3D printing: a review. Crit. Rev. Food Sci. Nutr., 8398, 1–8.
[2]Mohamed, O.A., Masood, S.H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf ., 3, 42–53.
[3]Gibson, I., Rosen, D. W., & Stucker, B. (2010). Design for additive manufacturing. In Additive manufacturing technologies (pp. 299-332). Boston: Springer.
[4]Mantihal, S., Kobun, R., & Lee, B. (2020). International Journal of Gastronomy and Food Science 3D food printing of as the new way of preparing food : A review. Int. J. Gastron. Food Sci., 22, 100260.
[5]Hwang, S., Reyes, E.I., Moon, K.S., Rumpf, R.C., & Kim, N.S. (2015). Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater., 44, 771–777.
[6]Jayaprakash, S., Ituarte, I.F., & Partanen, J. (2019). Prosumer-Driven 3D Food Printing: Role of Digital Platforms in Future 3D Food Printing Systems. In F.C. Godoi, B.R. Bhandari, S. Prakash & M. Zhang, (Eds.). Fundamentals of 3D Food Printing and Applications. (pp. 331-354). London: Academic Press.
[7]Pérez, B., Nykvist, H., Brøgger, A. F., Larsen, M. B., & Falkeborg, M. F. (2019). Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review Food Chem., 287, 249–57.
[8]Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D.L., Norén, N., & Lipson, H. (2010). Multi-material food printing with complex internal structure suitable for conventional post-processing. Solid Free. Fabr. Symp., 809–15.
[9]Lee, J. H., Won, D. J., Kim, H. W., & Park, H. J. (2019). Effect of particle size on 3D printing performance of the food-ink system with cellular food materials. Journal of Food Engineering., 256, 1-8.
[10]Liu, Y., Liang, X., Saeed, A., Lan, W., & Qin, W. (2019). Properties of 3D printed dough and optimization of printing parameters Innov. Food Sci. Emerg. Technol., 54, 9–18.
[11]Yang, F., Zhang, M.,Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters LWT - Food Sci. Technol., 87, 67–76.
[12]Guo, C. F., Zhang, M., & Bhandari, B. (2019). A comparative study between syringe-based and screw-based 3D food printers by computational simulation. Computers and Electronics in Agriculture, 162, 397-404.
[13]Hao, L., Mellor, S., Seaman, O., Henderson, J., Sewell, N., & Sloan, M. (2010). Material characterisation and process development for chocolate additive layer manufacturing Virtual Phys. Prototyp., 5, 57–64.
[14]Tan, C., Toh, W. Y., Wong, G., & Lin, L. (2018). Extrusion-based 3D food printing–Materials and machines.
[15]Gloria, H., Sievert, & D. (2001). Changes in the physical state of sucrose during dark chocolate processing J. Agric. Food Chem., 49, 2433– 2436.
[16]Lanaro, M., Forrestal, D.P., Scheurer, S., Slinger, D.J., Liao, S., Powell, S.K., &Woodruff, M. A. (2017) 3D printing complex chocolate objects: Platform design, optimization and evaluation. J. Food Eng., 215, 13–22.
[17]Gonçalves, E. V., & Lannes, S. C. D. S. (2010). Chocolate rheology. Food Science and Technology, 30(4), 845-851.
[18]Chevalley, J., (1975). Rheology of chocolate. Journal of texture studies.,6(2), 177-196.
[19]Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector Trends Food Sci. Technol., 69, 83–94.
[20]Mantihal, S., Prakash, S., Godoi, F.C., & Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling Innov. food Sci. Emerg. Technol., 44, 21–29.
[21]Mantihal, S., Prakash, S.,Godoi, F. C., & Bhandari, B. (2019). Effect of additives on thermal, rheological and tribological properties of 3D printed dark chocolate Food Res. Int., 119, 161–169.
[22]Dankar, I., Haddarah, A., Omar, F. E. L., Sepulcre, F., & Pujolà, M. (2018). 3D printing technology: The new era for food customization and elaboration Trends Food Sci. Technol., 75, 231–242.
[23]Nachal, N., Moses, J. A., Karthik, P., & Anandharamakrishnan, C. (2019). Applications of 3D Printing in Food Processing Food Eng. Rev., 11, 123–141.
[24]Derossi, A., Caporizzi, R., Ricci, I., & Severini, C. (2019). Critical Variables in 3D Food Printing. In In F.C. Godoi, B.R. Bhandari, S. Prakash & M. Zhang, (Eds.). Fundamentals of 3D food printing and applications (pp. 41-91). London: Academic Press.
[25]Liu, Z., & Zhang, M. (2019). 3D Food Printing Technologies and Factors Affecting Printing Precision. In In F.C. Godoi, B.R. Bhandari, S. Prakash & M. Zhang, (Eds.). Fundamentals of 3D Food Printing and Applications (pp. 19-40). London: Academic Press.