Isolation and identification of a strain producing the phospholipase enzyme from waste oil industry and its mutant

Document Type : Research Article

Authors

1 PhD Student, Food Science and Technology, Tarbiat Modarres University

2 Associate Professor, Food Science and Technology, Tarbiat Modarres University

3 Professor, Food Science and Technology, Tarbiat Modarres University

4 Associate Professor, Shahid Beheshti University

Abstract

In the present study, among several species capable of producing phospholipase were isolated from the oil industry wastewater, Tricoderma atroviride ZB-ZH 192 identified and selected for further investigation. In order to increase phospholipase activity, the selected strain was exposed to random mutation by gamma rays irradiation at various doses of 200, 400, 600 and 800 Gy. Comparison between wild and mutant-types of enzymes showed that gamma radiation of 400 Gy led to stable mutation with increasing phospholipase activity rate from  1.96 l to 3.71 (U/mL) and biomass rate of production from 8.13 to 13.17 (g/L). In order to screen and evaluate factors affecting the enzyme activity and biomass production by selected mutant, Plackett-Burman design with seven variables each at two levels including temperature, time, amount of soybean phospholipids (as a carbon source), peptone level (as nitrogen source), equal ratio of mono and di-potassium hydrogen phosphate (as phosphorus source), seed size and seed age were studied using JMP software. The results showed that high levels of time, temperature and soybean phospholipids as a carbon source had significant effect on the enzyme activity, while factors such as amount of peptone as a source of nitrogen and time had significant effect on the biomass production.

Keywords

Main Subjects


 [1].  Alp, S., Arikan, S. (2008). Investigation of extracellular elastase, acid proteinase and phospholipase activities as putative virulence factors in clinical isolates of Aspergillus species. J. Basic Microbiol., 48, 331-337.
[2].  Sergeev, N., Distler. M., Vargas, M., Chizhikov, V., Herold, K. E., Rasooly, A. (2006). Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods., 65, 488-502.
[3]. Xu, S., Cai, L., Zhao, L., Douhan-Håkansson, L., Kristjánsson, G., Pauksen, K. (2010). Tissue localization and the establishment of a sensitive immunoassay of the newly discovered human phospholipase B-precursor (PLB-P). J. Immunol. Methods., 353, 71-77.
[4]. Leon, C., Taylor, R., Bartlett, K. H., Wasan, K. M. (2005). Effect of heat-treatment and the role of phospholipases on fungizoneinduced cytotoxicity within human kidney proximal tubular (HK-2) cells and Aspergillus fumigatus. Int. J. Pharm., 14, 211-218.
[5]. Guo,  Z., Vikbjerg, A. F., Xu, X. (2005). Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol. Adv., 23, 203–259.
[6]. Song, J. K., Han, J. J., Rhee, J. S. (2005). Phospholipases: Occurrence and production in microorganisms, assay for high-throughput screening, and gene discovery from natural and man-made diversity. J. AOCS., 82(10), 691-705.
[7]. Song, J. K., Rhee, J. S. (2000). Simultaneous enhancement of thermo-stability and catalytic activity of phospholipase A1 by evolutionary molecular engineering. Appl. Environ. Microbiol., 66, 890–894.
[8]. Song, J. K., Rhee, J. S. (2001). Enhancement of stability and activity of phospholipase A1 in organic solvents by directed evolution. BBA-Mol. Cell Biol. Lipids, 1547, 370–378.
[9]. Hartmann, M., Guberman, A., Christensen, M., Tiedtke, A. (2000). Screening for and characterization of phospholipase A1 hypersecretory mutants of Tetrahymena thermophila. Appl. Microbiol. Biotechnol., 54, 390-396.
[10]. Shiba, Y., Ono, C., Fukui, F., Watanabe, I., Serizawa, N., Gomi, K.,Yoshikawa, H. (2001). High-Level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci. Biotechnol. Biochem., 65, 94–101.
[11]. Kishimura, H., Ojima, T. Hayashi, K., Nishita, K. (2004). Bacterial expression and characterization of starfish phospholipase A2. Comp. Biochem. Physiol., 128, 565–573.
[12]. Plackett, R. L., Burman, J. P. (1946). The design of optimum multifactorial experiments, Biometrika., 33, 305.
[13]. Jiang, F., Kaleem, I., Huang, S., Li. C. (2012). Cloning and expression of a gene with phospholipase B activity from Pseudomonas fluorescens in Escherichia coli. Bioresource Technol., 104, 518–522.
[14]. Jiang, F., Wang, J., Kaleem, I., Dai, D., Zhou, X., Li. C. (2011). Degumming of vegetable oils by a novel phospholipase B from Pseudomonas fluorescens BIT-18. Bioresource Technol, 102, 8052–8056.
[15]. Zarei Mahmoudabadi, A., Zarrin, M., Miry, S. (2010). Phospholipase activity of Candida albicans isolated from vagina and urine samples. Jundashapur. J. Microbiol. 3 (4), 169–173.
[16]. Cummings, B. (2013). Microbiology, A Laboratory Manual, 10th ed., Longman, New Yourk, 560 p.
[17]. صفایی، ن.؛ علیزاده، ع.؛ سعیدی، ع.؛ رحیمیان، ح.؛ و آدام، گ. (1384) تشخیص مولکولی و بررسی تنوع ژنتیکی جمعیت های ایرانی Fusarium graminearum عامل بلایت سنبله گندم. بیماریهای گیاهی ایران، جلد 41، ص171-189.
[18]. Goldman, E., Green, L. H. (2008). Practical handbook of microbiology, 2nd ed, CRC Press, USA, 876 p.
[19]. Ridout, C. J., Coley-Smith J. R. (1988). Fractionation of extracellular enzymes from a mycoparasitic strain of Trichoderma harzianum. Enzym. Microb. Technol., 10, 180-187.
[20]. Singh, A., Shahid, M., Srivastava, M., Pandey, S., Sharma, A. (2014). Optimal physical parameters for growth of Trichoderma Species at varying pH, temperature and agitation. Virol. Mycol., 3, 1-9.
[21]. Jiang, X., Chang, M., Wang, X., Jin, Q., Wang, X. (2014). The effect of ultrasound on enzymatic degumming process of rapeseed oil by the use of phospholipase A1. Ultrasoni. Sonochem., 21, 142–148.
[22]. Acikel, U., Ersana, M., SAĞ Acikel, Y. (2011). The effects of the composition of growth medium and fermentation conditions on the production of lipase by R. delemar. Turk. J. Biol., 35, 35-44.
[23]. Hosseni, S. M., Khosravi-Darani, K., Mohammadifar, M. A., Nikoopour, H. (2009). Production of mycoprotein by Fusarium venenatum growth on modified vogel medium. Asian J. Chem., 21, 4017-4022.
[24]. Hou, C. T., Johnston. T. (1992). Screening of lipase activities with cultures from the agricultural research service culture collection, J. AOCS., 69, 1088-1097.
[25]. Maza, L. M., Pezzlo, M, Baron, E. (1997). Color atlas of diagnostic microbiology. Mosboy-Book, Inc. Missouri, USA, 223 p.
[26]. Davidson, J., Schiestl, R. (2000). Cancer Cell Biology. Harvard School Public Health, 665 Huntington Avenue, Boston, USA.
[27]. Trampuz, A., Piper, K. E., Steckelberg, J. M., Patel, R. (2006). Effect of gamma irradiation on viability and DNA of Staphylococcus epidermidis and Escherichia coli. J. Med. Microbiol., 55, 1271–1275.
[28]. مرادی، ر.؛ شهبازی، س.؛ اهری­مصطفوی، ح.؛ ابراهیمی، م. ع.؛ عسکر، ح.؛ میرمجلسی، م. (1392). بررسی تأثیرات پرتو گاما بر خصوصیات مرفولوژیکی و آنتاگونیستی قارچTrichoderma harzianum  ، زیست­فناوری گیاهان زراعی، جلد 4، ص 109-117.
[29]. Zakipour-Molkabadi, E., Hamidi-Esfahani, Z., Sahari, M. A., Azizi, M. H. (2013). Improvement of strain Penicillium sp. EZ-ZH190 for tannase production by induced mutation. Appl. Biochem. Biotechnol., 171,1376–1389.
[30]. Wu, J., Xiao, Y., Yu, H. (2005). Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresource Technol., 96, 1357-1363.