بررسی رفتار رئولوژیکی وابسته به زمان (تیکسوتروپ) صمغ دانه مرو در حضور برخی نمک‌ها و قندها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی و مهندسی دانشگاه بناب

2 استاد فیزیک و مهندسی مواد غذایی گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه فردوسی مشهد

3 گروه علوم و صنایع غذایی، دانشکده کشاورزی دانشگاه جهرم

چکیده

< p>در این تحقیق، رفتار رئولوژیکی وابسته به زمان (تیکسوتروپ) محلول‌های صمغ دانه مرو در حضور نمک‌های کلرید سدیم و کلرید کلسیم در غلظت‌های مختلف (0، 10، 50 و 100 mM) و همچنین قندهای گلوکز و ساکارز در غلظت‌های مختلف (0%، 2%، 4% و 6%)، در سرعت‌های برش مختلف (10، 25 و 50 s-1) مورد بررسی قرار گرفت. محلول‌های صمغ دانه مرو در تمام شرایط مورد آزمایش رفتار تیکسوتروپ از خود نشان دادند. داده‌های بدست آمده از آزمون‌های رئولوژیکی به خوبی با مدل‌های سینتیک ساختار درجه دوم برای محلول‌های نمکی (987/0-918/0 R2=و 017/0-003/0RMSE=) و مدل ولتمن برای محلول‌های قندی (993/0-921/0 R2= و 020/0-003/0RMSE=) صمغ دانه مرو برازش یافتند. مقادیر سرعت شکست ساختار (k) و میزان شکست ساختار (0/) بدست آمده برای محلول‌های صمغ دانه مرو در حضور نمک‌ کلرید کلسیم به ترتیب بیشتر و کمتر از مقادیر بدست آمده در حضور نمک کلرید سدیم بود. در میان محلول‌های نمکی، محلول صمغ دانه مرو در حضور mM10 کلرید سدیم دارای بالاترین مقادیر تنش برشی اولیه و ضریب زمان شکست تیکسوتروپ بود. ضریب سفتی زنجیره (S) صمغ دانه مرو در حضور یون دوظرفیتی Ca2+ ( M0.5.Pa.s4-10×12 -4-10×8) بیشتر از یون تک ظرفیتی Na+ ( M0.5.Pa.s4-10×8 -4-10×6) تعیین شد. در مورد محلول‌های قندی صمغ دانه مرو، بالاترین مقدار k در حضور قند ساکارز مشاهده گردید و پارامتر میزان شکست ساختار با افزایش سرعت برش کاهش یافت. غلظت قندهای مورد آزمایش به ترتیب دارای یک اثر مستقیم و غیرمستقیم بر پارامتر‌های تنش برشی اولیه و ضریب زمان شکست تیکسوتروپ بود. نتایج این پژوهش به خوبی نشان داد که رفتار تیکسوتروپ صمغ دانه مرو به طور چشمگیری تحت تاثیر حضور یون‌ها و مولکول‌های قندی است، که این مساله در فرآیند تولید محصولات غذایی باید مورد توجه قرار گیرد.

چکیده تصویری

بررسی رفتار رئولوژیکی وابسته به زمان (تیکسوتروپ) صمغ دانه مرو در حضور برخی نمک‌ها و قندها

تازه های تحقیق

  • محلول‌های نمکی و قندی صمغ دانه مرو دارای رفتار تیکسوتروپ بودند.
  • پارامتر سفتی زنجیره در حضور یون کلسیم بیشتر از مقدار آن در حضور یون سدیم بود.
  • مدل‌های رئولوژیکی وابسته به زمان به خوبی با داده‌های آزمایشگاهی بدست آمده برازش یافتند.
  • پارامترهای رئولوژیکی وابسته به زمان صمغ دانه مرو تحت تاثیر نوع افزودنی‌های نمکی و قندی و غلظت‌های آن‌ها بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Time-dependent (thixotropic) rheological behavior of sage seed gum in the presence of some salts and sugars

نویسندگان [English]

  • Alireza Yousefi 1
  • Shahla Khodabakhshaghdam 1
  • Sayyed Mohammad Ali Razavi 2
  • Javad Tavakoli 3
  • Ghader Hosseinzadeh 1
1 Department of Chemical Engineering, Faculty of Engineering, University of Bonab
2 Professor in food physics and Engineering in Department of Food Science&amp;amp; Technology , Agriculture Faculty , Ferdowsi University of Mashhad, Iran
3 Department of Food Science and Technology, Faculty of Agriculture, Jahrom University
چکیده [English]

< p >In this study, the time-dependent (thixotropic) rheological behavior of sage seed gum (SSG) dispersions in the presence of NaCl and CaCl2 salts (0, 10, 50 and 100 mM), and glucose and sucrose sugars (0%, 2%, 4% and 6%) at different shear rates (10-50 s-1) was investigated. SSG dispersions exhibited a thixotropic behavior at all the conditions examined. The data obtained from rheological measurements were fitted well to the second-order structural kinetic (SOSK) model for salt solutions (R2 = 0.918-0.987, RMSE = 0.003-0.017) and Weltman model for sugar solutions (R2 = 0.921-0.993, RMSE = 0.003-0.020). The structural breakdown rate (k) and the structural breakdown extent (0/) values obtained for SSG in CaCl2 solutions were greater and lower than those of NaCl, respectively. Among the salt solutions, the SSG dispersions containing 10 mM NaCl have the greatest initial shear stress (A) and time coefficient of thixotropic breakdown (B) values. The chain stiffness (S) value in the presence of Ca2+ (8×10-4 ̶ 12×10-4 M0.5.Pa.s) was greater than that of Na+ (6×10-4 ̶ 8×10-4 M0.5.Pa.s). For sugar solutions of SSG, the greatest value of k was obtained for sucrose and the 0/ parameter diminished with increasing shear rate. Sugar concentration had a direct and indirect relationships with A and B parameters, respectively. The results of current study revealed that the thixotropic behaviour of SSG solutions is remarkably influenced by the salts and the sugars, so this issue can be considered in food product processing.

کلیدواژه‌ها [English]

  • Sage seed gum
  • Rheology
  • Thixotropic behavior
  • Modeling
[1] Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids: Elsevier.
[2] Yousefi, A. R., Razavi, S. M. A., & Norouzy, A. (2015). In vitro gastrointestinal digestibility of native, hydroxypropylated and cross-linked wheat starches. Food Funct., 6(9), 3126-3134.
[3] Razavi, S. M. A., & Karazhiyan, H. (2009). Flow properties and thixotropy of selected hydrocolloids: experimental and modeling studies. Food Hydrocolloid., 23(3), 908-912.
[4] Garcia‐Ochoa, F., & Casas, J. (1992). Viscosity of locust bean (Ceratonia siliqua) gum solutions. J. Sci. Food Agr., 59(1), 97-100.
[5] Zhang, L. M., Zhou, J. F., & Hui, P. S. (2005). A comparative study on viscosity behavior of water‐soluble chemically modified guar gum derivatives with different functional lateral groups. J. Sci. Food Agr., 85(15), 2638-2644.
[6] Yousefi, A. R., Zahedi, Y., Razavi, S. M. A., & Ghasemian, N. (2017). Influence of sage seed gum on some physicochemical and rheological properties of wheat starch. Starch‐Stärke, 69(11-12), 1600356.
[7] Yousefi, A., Razavi, S. M., & Aghdam, S. K. (2014). Influence of temperature, mono-and divalent cations on dilute solution properties of sage seed gum. Int. J. Biol. Macromol., 67, 246-253.
[8] Bostan, A., Razavi, S. M. A., & Farhoosh, R. (2010). Optimization of hydrocolloid extraction from wild sage seed (Salvia macrosiphon) using response surface. Int. J. Food Prop., 13(6), 1380-1392.
[9] Razavi, S. M. A., Taheri, H., & Quinchia, L. A. (2011). Steady shear flow properties of wild sage (Salvia macrosiphon) seed gum as a function of concentration and temperature. Food Hydrocolloid., 25(3), 451-458.
[10] Razavi, S. M., Moghaddam, T. M., Emadzadeh, B., & Salehi, F. (2012). Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. Food Hydrocolloid., 29(1), 205-210.
[11] Razavi, S. M. A., Taheri, H., & Sanchez, R. (2013). Viscoelastic characterization of sage seed gum. Int. J. Food Prop., 16(7), 1604-1619.
[12] Yousefi, A. R., Eivazlou, R., & Razavi, S. M. A. (2016). Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties. Int. J. Biol. Macromol., 91, 1018-1024.
[13] Razavi, S. M. A., Alghooneh, A., Behrouzian, F., & Cui, S. W. (2016). Investigation of the interaction between sage seed gum and guar gum: Steady and dynamic shear rheology. Food Hydrocolloid., 60, 67-76.
[14] Razavi, S. M. A., Alghooneh, A., & Behrouzian, F. (2018). Thermo-rheology and thermodynamic analysis of binary biopolymer blend: A case study on sage seed gum-xanthan gum blends. Food Hydrocolloid., 77, 307-321.
[15] Durairaj, R., Ekere, N. N., & Salam, B. (2004). Thixotropy flow behaviour of solder and conductive adhesive pastes. J. Mater. Sci-Mater. El., 15(10), 677-683.
[16] Razmkhah, S., Razavi, S. M. A., & Mohammadifar, M. A. (2017). Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed (Lepidium sativum) gum fractions. Food Hydrocolloid., 63, 404-413.
[17] Yousefi, A. R., & Razavi, S. M. A. (2016). Steady shear flow behavior and thixotropy of wheat starch gel: Impact of chemical modification, concentration and saliva addition. J. Food process. Eng., 39, 31-43.
[18] Weltmann, R. N. (1943). Breakdown of thixotropic structure as function of time. J.  Appl. Phy., 14(7), 343-350.
[19] Steffe, J. F. (1996). Rheological methods in food process engineering: Freeman press.
[20] Carbonell, E., Costell, E., & Duran, L. (1991). Rheological behaviour of sheared jams. Relation with fruit content. J. Texture Stud., 22(1), 33-43.
[21] Thebaudin, J.-Y., Lefebvre, A.-C., & Doublier, J.-L. (1998). Rheology of starch pastes from starches of different origins: applications to starch-based sauces. LWT-Food Sci. Technol., 31(4), 354-360.
[22] Behrouzian, F., Razavi, S. M. A., & Karazhiyan, H. (2013). The effect of pH, salts and sugars on the rheological properties of cress seed (Lepidium sativum) gum. Int. J. Food Sci. Tech., 48(12), 2506-2513.
[23] Behrouzian, F., Razavi, S. M. A., & Karazhiyan, H. (2014). Intrinsic viscosity of cress (Lepidium sativum) seed gum: Effect of salts and sugars. Food Hydrocolloid., 35, 100-105.
[24] Hesarinejad, M. A., Razavi, S. M. A., & Koocheki, A. (2015). Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. Int. J. Biol. Macromol., 81, 418-426.
[25] Mao, C.-F., & Chen, J.-C. (2006). Interchain association of locust bean gum in sucrose solutions: An interpretation based on thixotropic behavior. Food Hydrocolloid., 20(5), 730-739.
[26] Amini, A. M., & Razavi, S. M. A. (2012). Dilute solution properties of Balangu (Lallemantia royleana) seed gum: Effect of temperature, salt, and sugar. Int. J. Biol. Macromol., 51(3), 235-243.
[27] Salehi, F., Kashaninejad, M., & Behshad, V. (2014). Effect of sugars and salts on rheological properties of Balangu seed (Lallemantia royleana) gum. Int. J. Biol. Macromol., 67, 16-21.
[28] Bak, J. H., & Yoo, B. (2018). Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum: Effect of NaCl, sucrose, and pH. Int. J. Biol. Macromol., 111, 77-81.
[29] Sherahi, M. H., Shadaei, M., Ghobadi, E., Zhandari, F., Rastgou, Z., & Hashemi, S. M. B. (2018). Effect of temperature, ion type and ionic strength on dynamic viscoelastic, steady-state and dilute-solution properties of Descurainia sophia seed gum. Food Hydrocolloid., 79, 81-89.
[30] Abu-Jdayil, B., Azzam, M., & Al-Malah, K. (2001). Effect of glucose and storage time on the viscosity of wheat starch dispersions. Carbohyd. Polym., 46(3), 207-215.
[31] Ma, J., Lin, Y., Chen, X., Zhao, B., & Zhang, J. (2014). Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloid., 38, 119-128.
[32] Li, X., Fang, Y., Zhang, H., Nishinari, K., Al-Assaf, S., & Phillips, G. O. (2011). Rheological properties of gum arabic solution: From Newtonianism to thixotropy. Food Hydrocolloid., 25(3), 293-298.
[33] Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., & Katthain, R. (2000). Rheological properties of the mucilage gum (Opuntiaficus indica). Food Hydrocolloid., 14(5), 417-424.
[34] Koocheki, A., & Razavi, S. M. A. (2009). Effect of concentration and temperature on flow properties of Alyssum homolocarpum seed gum solutions: assessment of time dependency and thixotropy. Food Biophys., 4(4), 353-364.
[35] Zhang, L. M., Kong, T., & Hui, P. S. (2007). Semi‐dilute solutions of hydroxypropyl guar gum: Viscosity behaviour and thixotropic properties. J. Sci. Food Agr., 87(4), 684-688.
[36] Ghannam, M. T., & Esmail, M. N. (1997). Rheological properties of carboxymethyl cellulose. J. Appl. Polym. Sci., 64(2), 289-301.
[37] Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., & Farhoosh, R. (2009). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloid., 23(8), 2062-2068.
[38] Wei, Y., Wang, C., & Wu, J. (2001). Flow properties of fruit fillings. Food Res. Int., 34(5), 377-381.
[39] Lin, H.-Y., & Lai, L.-S. (2009). Isolation and viscometric characterization of hydrocolloids from mulberry (Morus alba L.) leaves. Food Hydrocolloid., 23(3), 840-848.
[40] Mazurkiewicz, J., Rębilas, K., & Tomasik, P. (2006). Dextran—low-molecular saccharide sweetener interactions in aqueous solutions. Food Hydrocolloid., 20(1), 21-23.
[41] Ozdemir, M., & Sadikoglu, H. (1998). Characterization of rheological properties of systems containing sugar substitutes and carrageenan. Int. J. Food Sci. Technol., 33(5), 439-444.
[42] Koocheki, A., Mortazavi, S. M. A., Shahidi, F., Razavi, S. M., & Taherian, A. (2009). Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng., 91(3), 490-496.
[43] Wang, B., Wang, L.-J., Li, D., Özkan, N., Li, S.-J., & Mao, Z.-H. (2009). Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose. Carbohyd. Polym., 77(3), 472-481.
[44] Yang, Z., Yang, H., & Yang, H. (2018). Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocolloid., 75, 164-173.
[45] Nguyen, Q. D., Jensen, C. T., & Kristensen, P. G. (1998). Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem. Eng. J., 70(2), 165-171.
[46] Marcotte, M., Hoshahili, A. R. T., & Ramaswamy, H. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res. Int., 34(8), 695-703.