[1] Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids: Elsevier.
[2] Yousefi, A. R., Razavi, S. M. A., & Norouzy, A. (2015). In vitro gastrointestinal digestibility of native, hydroxypropylated and cross-linked wheat starches. Food Funct., 6(9), 3126-3134.
[3] Razavi, S. M. A., & Karazhiyan, H. (2009). Flow properties and thixotropy of selected hydrocolloids: experimental and modeling studies. Food Hydrocolloid., 23(3), 908-912.
[4] Garcia‐Ochoa, F., & Casas, J. (1992). Viscosity of locust bean (Ceratonia siliqua) gum solutions. J. Sci. Food Agr., 59(1), 97-100.
[5] Zhang, L. M., Zhou, J. F., & Hui, P. S. (2005). A comparative study on viscosity behavior of water‐soluble chemically modified guar gum derivatives with different functional lateral groups. J. Sci. Food Agr., 85(15), 2638-2644.
[6] Yousefi, A. R., Zahedi, Y., Razavi, S. M. A., & Ghasemian, N. (2017). Influence of sage seed gum on some physicochemical and rheological properties of wheat starch. Starch‐Stärke, 69(11-12), 1600356.
[7] Yousefi, A., Razavi, S. M., & Aghdam, S. K. (2014). Influence of temperature, mono-and divalent cations on dilute solution properties of sage seed gum. Int. J. Biol. Macromol., 67, 246-253.
[8] Bostan, A., Razavi, S. M. A., & Farhoosh, R. (2010). Optimization of hydrocolloid extraction from wild sage seed (Salvia macrosiphon) using response surface. Int. J. Food Prop., 13(6), 1380-1392.
[9] Razavi, S. M. A., Taheri, H., & Quinchia, L. A. (2011). Steady shear flow properties of wild sage (Salvia macrosiphon) seed gum as a function of concentration and temperature. Food Hydrocolloid., 25(3), 451-458.
[10] Razavi, S. M., Moghaddam, T. M., Emadzadeh, B., & Salehi, F. (2012). Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. Food Hydrocolloid., 29(1), 205-210.
[11] Razavi, S. M. A., Taheri, H., & Sanchez, R. (2013). Viscoelastic characterization of sage seed gum. Int. J. Food Prop., 16(7), 1604-1619.
[12] Yousefi, A. R., Eivazlou, R., & Razavi, S. M. A. (2016). Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties. Int. J. Biol. Macromol., 91, 1018-1024.
[13] Razavi, S. M. A., Alghooneh, A., Behrouzian, F., & Cui, S. W. (2016). Investigation of the interaction between sage seed gum and guar gum: Steady and dynamic shear rheology. Food Hydrocolloid., 60, 67-76.
[14] Razavi, S. M. A., Alghooneh, A., & Behrouzian, F. (2018). Thermo-rheology and thermodynamic analysis of binary biopolymer blend: A case study on sage seed gum-xanthan gum blends. Food Hydrocolloid., 77, 307-321.
[15] Durairaj, R., Ekere, N. N., & Salam, B. (2004). Thixotropy flow behaviour of solder and conductive adhesive pastes. J. Mater. Sci-Mater. El., 15(10), 677-683.
[16] Razmkhah, S., Razavi, S. M. A., & Mohammadifar, M. A. (2017). Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed (Lepidium sativum) gum fractions. Food Hydrocolloid., 63, 404-413.
[17] Yousefi, A. R., & Razavi, S. M. A. (2016). Steady shear flow behavior and thixotropy of wheat starch gel: Impact of chemical modification, concentration and saliva addition. J. Food process. Eng., 39, 31-43.
[18] Weltmann, R. N. (1943). Breakdown of thixotropic structure as function of time. J. Appl. Phy., 14(7), 343-350.
[19] Steffe, J. F. (1996). Rheological methods in food process engineering: Freeman press.
[20] Carbonell, E., Costell, E., & Duran, L. (1991). Rheological behaviour of sheared jams. Relation with fruit content. J. Texture Stud., 22(1), 33-43.
[21] Thebaudin, J.-Y., Lefebvre, A.-C., & Doublier, J.-L. (1998). Rheology of starch pastes from starches of different origins: applications to starch-based sauces. LWT-Food Sci. Technol., 31(4), 354-360.
[22] Behrouzian, F., Razavi, S. M. A., & Karazhiyan, H. (2013). The effect of pH, salts and sugars on the rheological properties of cress seed (Lepidium sativum) gum. Int. J. Food Sci. Tech., 48(12), 2506-2513.
[23] Behrouzian, F., Razavi, S. M. A., & Karazhiyan, H. (2014). Intrinsic viscosity of cress (Lepidium sativum) seed gum: Effect of salts and sugars. Food Hydrocolloid., 35, 100-105.
[24] Hesarinejad, M. A., Razavi, S. M. A., & Koocheki, A. (2015). Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. Int. J. Biol. Macromol., 81, 418-426.
[25] Mao, C.-F., & Chen, J.-C. (2006). Interchain association of locust bean gum in sucrose solutions: An interpretation based on thixotropic behavior. Food Hydrocolloid., 20(5), 730-739.
[26] Amini, A. M., & Razavi, S. M. A. (2012). Dilute solution properties of Balangu (Lallemantia royleana) seed gum: Effect of temperature, salt, and sugar. Int. J. Biol. Macromol., 51(3), 235-243.
[27] Salehi, F., Kashaninejad, M., & Behshad, V. (2014). Effect of sugars and salts on rheological properties of Balangu seed (Lallemantia royleana) gum. Int. J. Biol. Macromol., 67, 16-21.
[28] Bak, J. H., & Yoo, B. (2018). Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum: Effect of NaCl, sucrose, and pH. Int. J. Biol. Macromol., 111, 77-81.
[29] Sherahi, M. H., Shadaei, M., Ghobadi, E., Zhandari, F., Rastgou, Z., & Hashemi, S. M. B. (2018). Effect of temperature, ion type and ionic strength on dynamic viscoelastic, steady-state and dilute-solution properties of Descurainia sophia seed gum. Food Hydrocolloid., 79, 81-89.
[30] Abu-Jdayil, B., Azzam, M., & Al-Malah, K. (2001). Effect of glucose and storage time on the viscosity of wheat starch dispersions. Carbohyd. Polym., 46(3), 207-215.
[31] Ma, J., Lin, Y., Chen, X., Zhao, B., & Zhang, J. (2014). Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloid., 38, 119-128.
[32] Li, X., Fang, Y., Zhang, H., Nishinari, K., Al-Assaf, S., & Phillips, G. O. (2011). Rheological properties of gum arabic solution: From Newtonianism to thixotropy. Food Hydrocolloid., 25(3), 293-298.
[33] Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., & Katthain, R. (2000). Rheological properties of the mucilage gum (Opuntiaficus indica). Food Hydrocolloid., 14(5), 417-424.
[34] Koocheki, A., & Razavi, S. M. A. (2009). Effect of concentration and temperature on flow properties of Alyssum homolocarpum seed gum solutions: assessment of time dependency and thixotropy. Food Biophys., 4(4), 353-364.
[35] Zhang, L. M., Kong, T., & Hui, P. S. (2007). Semi‐dilute solutions of hydroxypropyl guar gum: Viscosity behaviour and thixotropic properties. J. Sci. Food Agr., 87(4), 684-688.
[36] Ghannam, M. T., & Esmail, M. N. (1997). Rheological properties of carboxymethyl cellulose. J. Appl. Polym. Sci., 64(2), 289-301.
[37] Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., & Farhoosh, R. (2009). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloid., 23(8), 2062-2068.
[38] Wei, Y., Wang, C., & Wu, J. (2001). Flow properties of fruit fillings. Food Res. Int., 34(5), 377-381.
[39] Lin, H.-Y., & Lai, L.-S. (2009). Isolation and viscometric characterization of hydrocolloids from mulberry (Morus alba L.) leaves. Food Hydrocolloid., 23(3), 840-848.
[40] Mazurkiewicz, J., Rębilas, K., & Tomasik, P. (2006). Dextran—low-molecular saccharide sweetener interactions in aqueous solutions. Food Hydrocolloid., 20(1), 21-23.
[41] Ozdemir, M., & Sadikoglu, H. (1998). Characterization of rheological properties of systems containing sugar substitutes and carrageenan. Int. J. Food Sci. Technol., 33(5), 439-444.
[42] Koocheki, A., Mortazavi, S. M. A., Shahidi, F., Razavi, S. M., & Taherian, A. (2009). Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng., 91(3), 490-496.
[43] Wang, B., Wang, L.-J., Li, D., Özkan, N., Li, S.-J., & Mao, Z.-H. (2009). Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose. Carbohyd. Polym., 77(3), 472-481.
[44] Yang, Z., Yang, H., & Yang, H. (2018). Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocolloid., 75, 164-173.
[45] Nguyen, Q. D., Jensen, C. T., & Kristensen, P. G. (1998). Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem. Eng. J., 70(2), 165-171.
[46] Marcotte, M., Hoshahili, A. R. T., & Ramaswamy, H. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res. Int., 34(8), 695-703.