مدل‌سازی خشک‌کردن توت سیاه با سامانه مادون‌قرمز به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مواد و طراحی صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استاد، دانشگاه علوم کشاورزی و منابع طیبعی گرگان

10.22104/jift.2018.2972.1723

چکیده

شاه توت سرشار از پلی فنل­ها و آنتوسیانین­ها است که خشک‌کردن و نگه‌داری آن می­تواند ارزشمند باشد. استفاده از تابش مادون قرمز به‌عنوان یک روش مناسب در خشک‌کردن می‌تواند باعث کاهش زمان خشک‌کردن و کاهش هزینه‌های فرایند می­شود. اثر توان­هایw  120، 180، 240 لامپ مادون قرمز،  فاصله­های cm 5، 10 و 15  نمونه از لامپ و زمان خشک‌کردن بر خشک‌شدن توت سیاه مورد بررسی قرار گرفت. مدل­سازی خشک‌شدن توت سیاه به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی با چهار ورودی توان، فاصله لامپ و زمان خشک‌کردنو یک خروجی درصد کاهش رطوبت انجام شد. مشخص شد که با افزایش توان لامپ و کاهش فاصله نمونه­ها از لامپ مادون قرمز، سرعت خشک‌کردن توت سیاه به روش مادون قرمز دو طرفه به‌طور معنی داری (P<0.05) افزایش می­یابد. تابع فعال‌سازی سیگموئیدی به علت مقدار خطای کم‌تر نسبت به سایر توابع، به‌عنوان تابع فعال­سازی در لایه پنهان و خروجی انتخاب گردید. برای رسیدن به بهترین شرایط یادگیری روابط بین ورودی­ها و خروجی­ها توسط شبکه، بر اساس انجام روش آزمون و خطا از 15 درصد داده­ها برای آموزش، 15 درصد داده­ها برای آزمون شبکه آموزش دیده و 60 درصد باقی مانده داده­ها برای ارزیابی شبکه استفاده گردید. طبق نتایج به‌دست آمده مشخص شد با استفاده از تابع فعال­سازی سیگموئیدی و شبکه­ای با تعداد 8 نرون در یک لایه پنهان می­توان به خوبی مدل­سازی درصد کاهش رطوبت را به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی در طی فرایند خشک‌کردن توت سیاه به روش مادون قرمز دو طرفه پیشگویی کرد (00002/0Mse=، 999/0 R2=). زمان خشک‌کردن به‌عنوان مؤثرترین عامل برای کنترل کاهش رطوبت توت سیاه با استفاده از آنالیز حساسیت توسط شبکه عصبی بهینه معرفی شد.

چکیده تصویری

مدل‌سازی خشک‌کردن توت سیاه با سامانه مادون‌قرمز به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی

تازه های تحقیق

  • تعیین درصد کاهش وزن در توت سیاه توسط تابش مادون قرمز دوطرفه
  • تعیین اثر توان­ها، فاصله­ها و زمان­های مختلف بر درصد کاهش وزن در توت سیاه توسط تابش مادون قرمز دوطرفه
  • مدل­سازی الگوریتم ژنتیک- شبکه عصبی مصنوعی خشک شدن در توت سیاه توسط پرتو مادون‌قرمز دوطرفه

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of Blackberry Drying Process by Double sided infrared System using Genetic Algorithm–Artificial Neural Network Method

نویسندگان [English]

  • Alireza Asadiamirabadi 1
  • Mahdi Shavandi 2
  • Mehdi Kashaninezhad 3
1 Ph. D. Student, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 M.sc student of Faculty of Food Science &amp;amp; Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Professor, Faculty of Food Science &amp; Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Black mulberry is a very important and rich source of polyphenols and anthocyanin’s that dry and maintain can be valuable. The use of infrared radiation as a new method in drying preserves the quality of the final product, which increases the speed of drying and reduces the cost of the process. The effect of 120, 180, 240 W of infrared power, 5, 10 and 15 cm of sample distance from infrared source and drying time on black mulberry drying were investigated. Modeling of black mulberry drying was used to predict the output of this study using genetic algorithm-artificial neural network with four inputs (infrared power, sample distance from infrared source and drying time) and one output (weight loss percentage). It was determined that by increasing the infrared power and reducing the distance between the samples and the infrared lamp, the drying rate of black mulberry was significantly increased by two-way infrared (P<0.05). The sigmoid activation function was selected as the activation function in the hidden layer and output layer due to the lower error value than other functions. According to the test method and the fault method, 15% of the data was used for training to achieve the best learning conditions for the relationships between inputs and outputs by the network. 15% of the data was used for the trained network test, and 60% of the remaining data was used to evaluate the network. According to the results, it can be concluded that using the sigmoid activation function and the network with 8 neurons in a hidden layer, we can well analyze the percentage of weight loss using the genetic algorithm-artificial neural network during the black mulberry drying process was predicted by two-way infra-red method (R2=0/999). Drying time was introduced as the most effective factor for controlling black mulberry weight loss using sensitivity analysis by optimal neural network.

کلیدواژه‌ها [English]

  • Drying
  • Neural Network
  • Genetic algorithm
  • Black mulberry
  • prediction
  • Two-Way Infrared
 [1]Ercisli, S., & Orhan, E. (2008). Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Sci. Hortic, 116(1), 41-46.‏

 [2]Suh, H. J., Noh, D. O., Kang, C. S., Kim, J. M., & Lee, S. W. (2003). Thermal kinetics of color degradation of mulberry fruit extract. Food - Nahrung, 47(2), 132-135.‏

[3Lin, J. Y., & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food chem, 101(1), 140-147.‏

 [4] Hertog, M. G., Sweetnam, P. M., Fehily, A. M., Elwood, P. C., & Kromhout, D. (1997). Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr, 65(5), 1489-1494.‏

[5] Singhal, B. K., Khan, M. A., Dhar, A., Baqual, F. M., & Bindroo, B. B. (2010). Approaches to industrial exploitation of mulberry (mulberry sp.) fruits. J. Fruit Ornam Plant Res, 18, 83-99.‏

 [6] Arslan, O., Erzengin, M., Sinan, S., & Ozensoy, O. (2004). Purification of mulberry (Morus alba L.) polyphenol oxidase by affinity chromatography and investigation of its kinetic and electrophoretic properties. Food chem, 88(3), 479-484.‏

 [7] Fellows, P. J. (2009). Food processing technology: principles and practice. Elsevier.

[8] Moreira, R., Figueiredo, A., & Sereno, A. (2000). Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technol, 18(1-2), 279-294.‏

 [9] Lurie, S., & Nussinovitch, A. (1996). Compression characteristics, firmness, and texture perception of heat treated and unheated apples. j . Food Sci Technol Res, 31(1), 1-5.‏

 [10] Lin, Y. P., Lee, T. Y., Tsen, J. H., & King, V. A. E. (2007). Dehydration of yam slices using FIR-assisted freeze drying. J. Food Eng, 79(4), 1295-1301.‏

 [11] Jun, S., Krishnamurthy, K., Irudayaraj, J., & Demirci, A. (2010). Fundamentals and theory of infrared radiation. Pan, Z., and Atungulu, GG, eds., Infrared heating for food and agricultural processing: Boca Raton, Florida, CRC Press, 1-9.‏

 [12] Aidani, E., Hadadkhodaparast, M., & Kashaninejad, M. (2017). Experimental and modeling investigation of mass transfer during combined infrared‐vacuum drying of Hayward kiwifruits. Food Sci Nutr, 5(3), 596-601.‏

 [13] Wu, J., Zhang, H., & Li, F. (2017). A study on drying models and internal stresses of the rice kernel during infrared drying. Drying Technol, 35(6), 680-688.‏

 [14] Younis, M., Abdelkarim, D., & El-Abdein, A. Z. (2018). Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi J. Biol. Sci, 25(2), 332-338.‏

 [15] Orikasa, T., Ono, N., Watanabe, T., Ando, Y., Shiina, T., & Koide, S. (2018). Impact of blanching pretreatment on the drying rate and energy consumption during far-infrared drying of Paprika (Capsicum annuum L.). Food Quality and Safety, 2(2), 97-103.‏

[16Rad, S. J., Kaveh, M., Sharabiani, V. R., & Taghinezhad, E. (2018). Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat Mass Transf, 54(11), 3361-3374.‏

 [17] Jafari, S. M., Ganje, M., Dehnad, D., & Ghanbari, V. (2016). Mathematical, fuzzy logic and artificial neural network modeling techniques to predict drying kinetics of onion. J FOOD PROCESS PRES, 40(2), 329-339.‏

 [18] Bahmani, A., Jafari, S. M., Shahidi, S. A., & Dehnad, D. (2016). Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. J FOOD PROCESS PRES, 40(5), 815-827.‏

 [19] Bahmani, A., Jafari, S. M., Shahidi, S. A., & Dehnad, D. (2016). Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. J FOOD PROCESS PRES, 40(5), 815-827.‏

 [20]Bahramparvar, M., Salehi, F., & Razavi, S. M. (2014). Predicting total acceptance of ice cream using artificial neural network. J FOOD PROCESS PRES, 38(3), 1080-1088.‏

 [21] Salehi, F., Abbasi Shahkoh, Z., & Godarzi, M. (2014). Apricot Osmotic Drying Modeling Using Genetic Algorithm-Artificial Neural Network. Innov Food Sci Technol.‏

 [22] محمدرضا اصغری، رحیم ابراهیمی، بهرام حسین زاده و داود قنبریان. (1396). " مدل‌سازی پارامترهای کیفی توت سفید در فرآیند خشک‌شدن با استفاده از شبکه عصبی مصنوعی". مهندسی بیوسیستم ایران، 48:1، 9-18.

[23]Erenturk, S., & Erenturk, K. (2007). Comparison of genetic algorithm and neural network approaches for the drying process of carrot. J. Food Eng, 78(3), 905-912.‏

 [24] Lertworasirikul, S., & Saetan, S. (2010). Artificial neural network modeling of mass transfer during osmotic dehydration of kaffir lime peel. J. Food Eng, 98(2), 214-223.‏

 [25] Salehi, F., & Razavi, S. M. (2016). Modeling of waste brine nanofiltration process using artificial neural network and adaptive neuro-fuzzy inference system. Desalination and Water Treatment, 57(31), 14369-14378.‏

 [26] اسدی امیر آبادی, کاشانی نژاد, صالحی, & فخرالدین. (2017). مدل سازی فرآیند خشک کردن بادمجان توسط سامانه مادون قرمز به روش الگوریتم ژنتیک-شبکه عصبی مصنوعی. نشریه فرآوری و نگهداری مواد غذایی, 9(1), 85-96.

[27] آیدانی, عماد, حدادخداپرست, & کاشانی نژاد. (2017). بررسی خصوصیات کیوی خشک شده با سامانه مادون قرمز و مدل‌سازی فرآیند. علوم غذایی و تغذیه, 14, 53-66.

[28] Puente-Díaz, L., Ah-Hen, K., Vega-Gálvez, A., Lemus-Mondaca, R., & Scala, K. D. (2013). Combined infrared-convective drying of murta (Ugni molinae Turcz) berries: kinetic modeling and quality assessment. Drying Technol, 31(3), 329-338.‏