طبقه‌بندی خواص بیولوژیکی میوه گلابی در بارگذاری دینامیکی و استاتیکی با استفاده از شبکه عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشجوی کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

10.22104/jift.2018.3185.1764

چکیده

شبکه‌های عصبی مصنوعی تکنیک‌های مدل‌سازی قدرتمند هستند که با آرایه‌هایی از نورون‌ها در حافظه و یادگیری بیولوژیک کار می‌کنند. در این تحقیق به بررسی طبقه‌بندی نوع بارگذاری دینامیکی و شبه استاتیکی (لبه پهن و لبه نازک) با استفاده از داده‌های ورودی محتوای فنول، انتی اکسیدان، ویتامین C و سفتی با شبکه عصبی مصنوعی پرداخته‌شده است. در این آزمایش برای طبقه‌بندی از دو شبکه تابع پایه شعاعی و پرسپترون چندلایه با دو تابع فعال سازی تانژانت هیپربولیک و سیگموئیدی در یک‌لایه مخفی با نرون هایی به تعداد 4 و 8 نرون استفاده شد. با توجه به نتایج بدست آمده بهترین مقدار R و درصد صحیح (Percent Correct) برای بارگذاری دینامیکی ( =100 – R=9999997درصد صحیح)، بارگذاری لبه نازک (=100 – R=9999993درصد صحیح) و بارگذاری لبه پهن (=100 – R=9999992درصد صحیح) بود، که در شبکه تابع پایه شعاعی با تابع فعال‌سازی سیگوئید و تعداد 8 نورون در لایه مخفی ایجادشده است. همچنین بیشترین داده‌های صحیح تشخیص داده‌شده برای نوع بارگذاری دینامیکی، لبه پهن و لبه نازک در شبکه‌های ایجادشده برای شبکه تابع پایه شعاعی مشاهده شد و این شبکه توانسته است که به‌طور 100 درصد برای تمامی بارگذاری‌ها میزان داده‌ها را به‌درستی طبقه‌بندی کند. درمجموع شبکه عصبی با ورودی داده‌های کلی توانایی مطلوبی را در طبقه‌بندی داده‌ای بارگذاری دینامیکی و شبه استاتیکی داشته است.

چکیده تصویری

طبقه‌بندی خواص بیولوژیکی میوه گلابی در بارگذاری دینامیکی و استاتیکی با استفاده از شبکه عصبی مصنوعی

تازه های تحقیق

  • دقت شبکه عصبی توابع پایه شعاعی(RBF) نسبت به شبکه چند لایه پرسپترون(MLP) بیشتر است.
  • تایع تانژانت هیپربولیک توانسته داده ها را به طور دقیق تری نسبت به تابع سیگموئیدی طبق بندی کند.
  • داده های فنول کل برای بارگذاری لبه نازک و دینامیکی ضریب حساسیت بیشتری برای طبقه بندی داشته اند.
  • داده های آنتی اکسیدان ضریب حساسیت بیشتری برای بارگذاری لبه پهن داشته اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biological Properties Classification of Pear Fruit in Dynamic and Static Loading using Artificial Neural Network

نویسندگان [English]

  • Mohsen Azadbakht 1
  • Mohammad Vahedi Torshizi 2
  • Ali Asghari 3
1 Associate Professor,Department of Bio-System Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 MSc. Student, Department of Bio-system Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Assistant Professor,Department of Bio-System Mechanical Engineering,Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Artificial Neural Networks (ANNs) are powerful modeling techniques that work in brief with arrays of neurons in memory and biological learning. In this research, the classification of dynamic and quasi-static loading type (broad and thin edge) was investigated using input data of phenol, antioxidant, vitamin C content and stiffness with artificial neural network. In this experiment for the classification of two Radial basic function and Multilayer perceptron networks were used with two hyperbolic tangent and sigmoid activation functions in one layer. According to the obtained results, the best value for R and Percent Correct for dynamic loading was (Percent Correct = 100 - R = 9999997), loading the thin edge (Percent Correct = 100 - R = 9999993) and loading the wide edge (Percent Correct = 100 - R = 9999992), which was created in the RBF network with a sigmoid function activation and 8 neurons in the one hidden layer. Also, the most accurate data found for the dynamic loading type, the wide edge and the thin edge was observed in the networks created for the RBF network, and this network has been able to 100% accurately classify the data rate for all loads. In sum, the neural network with the input of general data has the desirable capability in the stacking of dynamic loading and quasi-static data.

کلیدواژه‌ها [English]

  • artificial neural networks
  • Pear
  • Loading
  • Classification
[1] Massah, J.,F. Hajiheydari.,and M. H. Derafshi., (2017). Application of Electrical Resistance in Nondestructive Postharvest Quality Evaluation of Apple Fruit .Journal of Agricultural Science and Technology., 19: 1031–1039.

[2] Liu, Y.,and Y. Ying., (2007). Noninvasive Method for Internal Quality Evaluation of Pear Fruit Using Fiber-Optic FT-NIR Spectrometry .International Journal of Food Properties., 10: 877–886.

[3] Ganiron, T. U., (2014). Size properties of mangoes using image analysis .International Journal of Bio-Science and Bio-Technology., 6: 31–42.

[4] Pérez-Jiménez, J.,and F. Saura-Calixto., (2015). Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries .Food Research International., 74: 315–323.

[5] Kolniak-Ostek, J., (2016). Identification and quantification of polyphenolic compounds in ten pear cultivars by UPLC-PDA-Q/TOF-MS .Journal of Food Composition and Analysis., 49: 65–77.

[6] Balogun, W. A.,M. E. Salami.,A. M. Aibinu.,Y. M. Mustafah.,and S. I. B. S., (2014). Mini Review: Artificial Neural Network Application on Fruit and Vegetables Quality Assessment .International Journal of Scientific & Engineering Research., 5: 702–708.

[7] Fathi, M.,M. Mohebbi.,and S. M. A. Razavi., (2011). Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit .Food and Bioprocess Technology., 4: 1357–1366.

[8] Pan, L.,Q. Zhang.,W. Zhang.,Y. Sun.,P. Hu.,and K. Tu., (2016). Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network .Food Chemistry., 192: 134–141.

[9] Mazloumzadeh, S. .,S. . Alavi.,and M. Nouri., (2008). Comparison of Artificial Neural and Wavelet Neural Networks for Prediction of Barley Breakage in Combine Harvester .Journal of Agriculture., 10: 181–195.

[10] Beale, R.,and T. Jackson., (1998). Neural Computing: An Introduction,.

[11] Menhaj, M., (2000). Foundation of Artifitioal Neural Networks.,. Amir Kabir univercity.

[12] Das, S.,A. Routray.,and A. K. Deb., Hyperspectral Unmixing by Nuclear Norm Difference Maximization based Dictionary Pruning .

[13] ERIC JOHNSTON, B. A. S., Design , Optimization , and Testing of a Combined Tri-Axial Polarized Energy Dispersive X-Ray Fluorescence and Energy Dispersive X-Ray Diffraction System for Biological Sample Classification .

[14] Lu, H.,H. Zheng.,H. Lou.,L. Jiang.,Y. Chen.,and S. Fang., (2010). Using neural networks to estimate the losses of ascorbic acid, total phenols, flavonoid, and antioxidant activity in asparagus during thermal treatments .Journal of Agricultural and Food Chemistry., 58: 2995–3001.

[15] Hosu, A.,V. M. Cristea.,and C. Cimpoiu., (2014). Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks .Food Chemistry., 150: 113–118.

[16] Azadbakht, M.,M. Vehedi Torshizi.,H. Aghili.,and A. Ziaratban., (2018). Application of artificial neural network (ann) in drying kinetics analysis for potato cubes .CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY., 10: 96–106.

[17] Azadbakht, M.,M. Vahedi Torshizi.,and M. J. Mahmoodi., (2018). Determination of pear bruises due to a thin edge compression load by CT scan method .Innovative Food Technologies (JIFT).,.

[18] Diels, E.,M. van Dael.,J. Keresztes.,S. Vanmaercke.,P. Verboven.,B. Nicolai.,W. Saeys.,H. Ramon.,and B. Smeets., (2017). Assessment of bruise volumes in apples using X-ray computed tomography .Postharvest Biology and Technology., 128: 24–32.

[19] Jaramillo-Flores, M. E.,L. González-Cruz.,M. Cornejo-Mazón.,L. Dorantes-álvarez.,G. F. Gutiérrez-López.,and H. Hernández-Sánchez., (2003). Effect of Thermal Treatment on the Antioxidant Activity and Content of Carotenoids and Phenolic Compounds of Cactus Pear Cladodes (Opuntia ficus-indica) .Food Science and Technology International., 9: 271–278.

[20] Li, W. L.,X. H. Li.,X. Fan.,Y. Tang.,and J. Yun., (2012). Response of antioxidant activity and sensory quality in fresh-cut pear as affected by high O2active packaging in comparison with low O2packaging .Food Science and Technology International., 18: 197–205.

[21] Alrajeh, K. M., (2012). Date Fruits Classification using MLP and RBF Neural Networks .International Journal of Computer Applications., 41: 975–8887.

[22] Sandoval, G.,R. A. Vazquez.,P. Garcia.,and J. Ambrosio., (2014). Crop Classification Using Different Color Spaces and RBF Neural Networks. In 598–609.

[23] Soleimanzadeh, B.,L. Hemati.,M. Yolmeh.,and F. Salehi., (2015). GA-ANN and ANFIS models and salmonella enteritidis inactivation by ultrasound .Journal of Food Safety., 35: 220–226.

[24] Salehi, F. 1.,A. Gohari Ardabili.,A. 2 Nemati.,and R. Latifi Darab., (2017). Modeling of strawberry drying process using infrared dryer by genetic algorithm–artificial neural network method .journal Food Science and Technology., 14: 105–114.

[25] Azadbakht, M.,M. V. Torshizi.,and A. Ziaratban., (2016). Application of Artificial Neural Network ( ANN ) in predicting mechanical properties of canola stem under shear loading .Agricultural Engineering International: CIGR Journal., 18: 413–424.

[26] Salehi, F.,and S. M. A. Razavi., (2012). Dynamic modeling of flux and total hydraulic resistance in nanofiltration treatment of regeneration waste brine using artificial neural networks .Desalination and Water Treatment., 41: 95–104.

[27] B. Khoshnevisan, Sh. Rafiee, M. Omid, M. Y., (2013). Prediction of environmental indices of Iran wheat production using artificial neural networks .International Journal of Energy and Environment., 4: 339–348.

[28] Azadbakht, M.,H. Aghili.,A. Ziaratban.,and M. Vehedi Torshizi., (2017). Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes .Energy., 120: 947–958.