ارزیابی کاربرد روش ظرفیت نگهداری حلال در تعیین ویژگی‌های آرد و کیفیت نانوایی چاودم (1)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

3 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

4 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

چکیده

ظرفیت نگهداری حلال آرد (Solvent retention capacity)، سازگاری انواع خاصی از حلال براساس رفتار انبساطی تسریع‌شده‌ برای سه جزء پلیمری آرد شامل پروتئین‌های گلوتن، نشاسته‌ی آسیب‌دیده و پنتوزان‌ها (آرابینوزایلان‌ها) است که به نوبه‌ی خود امکان پیش‌بینی عملکرد جداگانه‌ی هر یک از این اجزاء در آرد را فراهم می‌کند. توانایی تجزیه و تحلیل ظرفیت عملکردی اختصاصی هر جزء پلیمری آرد، کاربران نهایی را به پیش‌بینی بهتر عملکرد کلی آرد و به دست آوردن کیفیت فراورده بهینه، قادر می‌سازد. هدف از این پژوهش، ارزیابی کاربرد آزمون SRC، در تعیین برخی از مهمترین ویژگی‌های دانه و آرد 12 رقم چاودم (تریتیکاله) هگزاپلوئید و مقایسه‌ی آن‌ها با گندم نان، گندم دوروم و چاودار به عنوان ارقام نزدیک و همچنین تعیین ضرایب همبستگی بین انواع ویژگی‌های دانه و آرد چاودم‌ها بود. در این تحقیق، از 4 حلال اصلی آزمون SRC شامل آب دیونیزه (همبسته با همه‌ی ترکیبات پلیمری آرد)، محلول لاکتیک اسید 5% (همبسته با ویژگی‌های پلیمرهای گلوتنین‌ها)، محلول سدیم‌ کربنات 5% (همبسته با محتوای نشاسته‌ی آسیب‌‌دیده) و محلول ساکارز 50% (همبسته با ویژگی‌های آرابینوزایلان‌ها) استفاده‌ شد. طبق نتایج به دست آمده، از ارقام چاودمی که دارای ویژگی‌های فیزیکی دانه‌ بهتری بودند، آردهایی تولید شد که به لحاظ ویژگی‌های فیزیکی و شیمیایی دارای کیفیت نانوایی بسیار بالاتری نسبت به سایر ارقام چاودم بودند. طی آزمون SRC، چنین آردهایی به علت بالا بودن کیفیت اجزاء پلیمری خود، دارای ظرفیت بیشتری برای نگهداری انواع حلال‌ها بودند و پروفیل‌های SRC مطلوب‌تر و بالاتری داشتند. بنابراین طبق نتایج این مطالعه، آزمون ظرفیت نگهداری حلال (SRC) به لحاظ روابط معنی‌دار و بسیار قوی پروفیل‌های آن با پارامترهای سایر روش‌های تعیین‌کننده‌ی کیفیت دانه و آرد، به تنهایی و به سهولت در تعیین و تشخیص ارقام با کیفیت نانوایی برتر و در نتیجه به دست آوردن فراورده با بهترین کیفیت قابل استفاده می‌باشد.

چکیده تصویری

ارزیابی کاربرد روش ظرفیت نگهداری حلال در تعیین ویژگی‌های آرد و کیفیت نانوایی چاودم (1)

تازه های تحقیق

  • بررسی ارتباط بین ساختار و عملکرد دانه و آرد چاودم با استفاده از روش کوچک مقیاس آزمونSRC  و به کارگیری انواع حلال‌های اصلی SRC.
  • مطالعه همزمان ویژگی‌های فیزیکی دانه و ویژگی‌های فیزیکی، شیمیایی و مولکولی آرد خویشاوندان نزدیک چاودم به عنوان نمونه‌های شاهد.
  • بررسی و پیدایش همبستگی‌های جدید بین انواع ویژگی‌های دانه و آرد چاودم و ارتباط آن‌ها با 5 پروفیل‌SRC .

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of solvent retention capacity method application in specify the features of triticale flour and bread making quality (І)

نویسندگان [English]

  • Mahsa Chavoushi 1
  • Mahdi Kadivar 2
  • Ahmad Arzani 3
  • Mohammad Reza Sabzalian 4
1 Master student, Department of Food Science, College of Agriculture, Isfahan University of Technology.
2 Professor, Department of Food Science, College of Agriculture, Isfahan University of Technology.
3 Professor, Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology.
4 Associate Professor, Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology.
چکیده [English]

Solvent retention capacity (SRC) provides a measure of solvent compatibility for the three functional polymeric components of gluten proteins, damaged starch, and pentosans (arabinoxylans) which in turn enables prediction of the functional contribution of each of these flour components. The ability to analyze the individual functional contribution of each functional component of flour would enable end-users to better predict overall flour functionality and obtain optimized product quality. The purpose of this study was to evaluate the application of the SRC test in determining some of the most important characteristics of grain and flour of 12 cultivars of hexaploid triticale and comparing them with bread wheat, durum wheat and rye as close cultivars, as well as determining correlation coefficients were between grain and flour characteristics of triticale. In this study, four major solvents of the SRC test including deionized water (correlated with all flour polymer compounds), 5% lactic acid solution (correlated with glutenin polymers properties), 5% sodium carbonate solution (correlated with damaged starch content) and sucrose solution 50% (correlated with the arabinoxylans content) were used. According to the results, of triticale cultivars with superior grain physical characteristics, flours with much superior physical and chemical characteristics than those triticale cultivars were produced. During the SRC test, such flours due to the high quality of their polymer components, had more capacity for retention of the main solvents of the SRC test and had more favorable and high SRC profiles. Therefore, according to the results of this study, the solvent retention capacity (SRC) test, in terms of its significant and highly correlated profiles with parameters of other methods determining the quality of grain and flour, alone and easily in identifies superior quality cultivars and thus gaining the product with the best quality can be used.

کلیدواژه‌ها [English]

  • Solvent retention capacity
  • Gluten proteins
  • Damaged starch
  • Pentosans
  • Individual functional contribution
  • Optimized product quality
[1] Zhu, F. (2017). Triticale: Nutritional composition and food uses. Food Chem., 241, 468-479.
[2] Ortiz-Monasterio, J. I., Pena, R. J., Hede, A. H., Pefeiffer, W. H. (2002). Nitrogen and water stress in triticale and durum wheat yield and quality, in: Proceeding of the 5th International Triticale Symposium. Radzikow, Poland, pp 11-26.
[3] خواجه­ پور، م. ر. (1393) غلات. مرکز نشر دانشگاه صنعتی اصفهان.
[4] مجنون حسینی، ن. (1385). زراعت غلات (گندم، جو، برنج و ذرت). مرکز نشر دانشگاه تهران.
[5] Kweon, M., Slade, L., Levine, H., Gannon, D. (2014). Cookie- versus cracker baking--What’s the difference? Flour functionality requirements explored by SRC and alveography. Crit. Rev. Food Sci. Nutr., 54, 115-138.
[6] Kweon, M., Slade, L., Levine, H. (2011). Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding- A review. Cereal Chem., 88, 537-552.
 [7] Slade, L., Levine, H. (1994). Structure-function relationships of cookie and cracker ingredients, in: Faridi, H. (Ed.), The Science of Cookie and Cracker Production, Chapman and Hall, New York, pp 23-141.
[8] AACC International. (2010). Approved Methods of the AACC. St. Paul, Minnesota, USA.
[9] Guzman, C., Romano, G.P., Espinosa, N.H., Dorantes, A.M., Pena, R.G. (2015). A new standard water absorption criteria based on solvent retention capacity (SRC) to determine dough mixing properties, viscoelasticity, and bread-making quality. J. Cereal Sci., 66, 59-65.
[10] Mohsenin, N.N. (1987). Physical Properties of Plant and Animal Materials: Structure, Physical Characteristics and Mechanical Properties. Nahrung., 31, 700-702.
[11] Zheng, C., Sun, D.W., Zheng, L. (2006). Recent developments and applications of Image features for food quality evaluation and inspection. J. Food Sci. Technol., 17, 113-128.
[12] Bayram, M., Öner, M.D., Eren, S. (2004). Effect of cooking time and temperature on the dimensions and crease of the wheat kernel during bulgur production. J Food Eng., 64, 43-51.
[13] Mariotti, M., Alamprese, C., Pagani, M.A., Lucisano, M. (2006). Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. J. Cereal Sci., 43, 47-56.
[14] Hously, T.L., Kirleis, A.W., Ohm, H.W., Patternson, F.L. (1981). An evaluation of seed growth in soft red winter wheat. Can J Plant Sci., 61, 525- 535.
[15] Sissons, M.J., Osborne, B., Sissons, S. (2006). Application of near infrared reflectance spectroscopy to a durum wheat breeding programme. JNIRS., 14, 17-25.
[16] Bass, E.J. (1988). Wheat flour milling. in: Pomeranz, Y. (Ed.), Wheat Chemistry and Technology, St. Paul, Minnesota, USA, AACC, pp 1-68.
[17] Drakos, A., Malindretou, K., Mandala, I., Evageliou, V. (2017). Protein isolation from jet milled rye flours differing in particle size. FBP., 104, 13-18.
[18] Carter, B.P., Morris, C.F. and Anderson, J.A. (1999). Optimizing the SDS sedimentation test for end-use quality selection in a soft white and club wheat breeding program. Cereal Chem., 76, 907-911.
[19] Williams, P.C., Kuzina, F.D., Hlynka, I. (1970). Rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem., 47, 411- 421.
[20] Hashimoto, S., Shogren, M., Pomeranz, Y. (1987). Cereal pentosans: Estimation and significance. I. Pentosans in wheat and milled wheat products. Cereal Chem., 64, 30-34.
[21] Pussayanawin, V. and Wetzel, D.L. (1987). High-performance liquid chromatographi determination of ferulic acid in wheat milling fractions as a measure of bran contamination. J. Chromatogr. A., 391, 243-255.
[22] Beveridge, T., Toma, S.J., Nakai, S. (1974). Determination of SH-and SS-groups in some food proteins using Ellman's Reagent. J. Food Sci., 39, 49-51.
[23] Leon, A.E., Rubiolo, A., Anon, M.C. (1996). Use of triticale flours in cookies: Quality factors. Cereal Chem., 73, 779- 784.
[24] Saldivar, S.O., Flores, S.G., Rios, R.V. (2004). Potential of triticale as substitute for wheat in flour tortilla production. Cereal Chem., 81, 220-225.
[25] Roccia, P., Moiraghi, M., Ribotta, P.D., Pérez, G.T., Rubiolo, O.J., León, A.E. (2006). Use of solvent retention capacity profile to predict the quality of triticale flours. Cereal Chem., 83, 243-249.
[26] Igne, B., Gibson, L.R., Rippke G.R., Schwarte, A. Hurburgh-Jr, C.R. (2007). Triticale Moisture and Protein Content Prediction by Near‐Infrared Spectroscopy (NIRS). Cereal Chem., 84, 328-330.
[27] León, A.E., Pérez, G.T., Ribotta, P.D. (2008). Triticale flours: composition, properties and utilization. GSB., 2, 17-24.
[28] Jonnala, R.S., MacRitchie, F., Herald, T.J., Lafiandra, D., Margiotta, B., Tilley, M. (2010). Protein and quality characterization of triticale translocation lines in breadmaking. Cereal Chem., 87, 546-552.
[29] Naik, H.R., Sekhon, K.S., Wani, A.A. (2010). Physicochemical and dough-handling characteristics of Indian wheat and triticale cultivars. Food Sci. Technol., 16, 371-379.
[30] Navarro-Contreras, A.L., Chaires-González, C.F., Rosas-Burgos, E.C., Borboa-Flores, J., Wong-Corral, F.  J., Cortez-Rocha, M.O., Cinco-Moroyoqui, F.J. (2014). Comparison of protein and starch content of substituted and complete triticales (× Triticosecale Wittmack): Contribution to functional properties. Int J Food Prop., 17, 421-432.
[31] Frás, A., Gołebiewska, K., Gołebiewski, D., Mankowski, D.R., Boros, D., Szecówka, P. (2016). Variability in the chemical composition of triticale grain, flour and bread. J. Cereal Sci., 71, 66-72.
[32] Aprodu, I., Banu, I. (2016). Comparative analyses of physicochemical and technological properties of triticale, rye and wheat. Food Technol., 40, 31-39.
[33] Oliete, B., Pérez, G.T., Gómez, M., Ribotta, P.D., Moiraghi, M., León, A.E. (2010). Use of wheat, triticale and rye flours in layer cake production. J. Food Sci. Technol., 45, 697-706.
[34] Rakha, A., Saulnier, L., Åman, P., Andersson, R. (2012). Enzymatic fingerprinting of arabinoxylan and glucan in triticale, barley and tritordeum grains. Carbohyd polym., 90, 1226-1234.
[35] Gaines, C.S. (2000). Collaborative study of methods for solvent retention capacity profiles (AACC method 56-11). Cereal Foods World., 45, 303-306.
[36] Guttieri, M.J., Bowen, D., Gannon, D., O’Brien, K., Souza, E. (2001). Solvent retention capacities of irrigated soft white spring wheat flours. Crop Sci., 41, 1054-1061.
[37] Bettge, A.D., Morris, C.F., DeMacon, V.L., Kidwell, K.K. (2002). Adaptation of AACC method 56-11, solvent retention capacity, for use as an early generation selection tool for cultivar development. Cereal Chem., 79, 670-674.
[38] Ram, S., Singh, R.P. (2004). Solvent retention capacities of Indian wheats and their relationship with cookie-making quality. Cereal Chem., 81, 128-133.
[39] Gaines, C.S. (2004). Prediction of sugar-snap cookie diameter using sucrose solvent retention capacity, milling softness, and flour protein content. Cereal Chem., 81, 549-552.
[40] Ram, S., Dawar, V., Singh, R.P., Shoran, J. (2005). Application of solvent retention capacity tests for the prediction of mixing properties of wheat flour. J. Cereal Sci., 42, 261-266.
[41] Gaines, C.S., Reid, J.F., Kant, C.V. Morris, C.F. (2006). Comparison of methods for gluten strength assessment. Cereal Chem., 83, 284-286.
[42] Xiao, Z.S., Park, S.H., Chung, O.K., Caley, M.S., Seib, P.A. (2006). Solvent retention capacity values in relation to hard winter wheat and flour properties and straight-dough breadmaking quality. Cereal Chem., 83, 465-471.
[43] Barrera, G.N., Perez, G.T., Ribotta, P.D., Leon, A.E. (2007). Influence of damaged starch on cookie and bread-making quality. Eur. Food Res. Technol., 225, 1-7.
[44] Nishio, Z., Oikawa, H., Haneda, T., Seki, M., Ito, M., Tabiki, T., Yamauchi, H., Miura, H. (2009). Influence of amylose content on cookie and sponge cake quality and solvent retention capacities in wheat flour. Cereal Chem., 86, 313-318.
[45] Nishio, Z., Miyazaki, Y., Seki, M., Ito, M., Tabiki, T., Nagasawa, K., Yamauchi, H., Miura, H. (2011). Effect of growing environment of soft wheat on amylose content and its relationship with cookie and sponge cake quality and solvent retention capacity. Cereal Chem., 88, 189-194.
[46] Duyvejonck, A.E.,Lagrain, B., Dornez, E.,Delcour, J.A., Courtin, Ch.M. (2012). Suitability of solvent retention capacity tests to assess the cookie and bread making quality of European wheat flours.  LWT - Food Sci. Technol., 47, 56-63.
[47] Hrušková, M., Švec, I., Karas, J. (2012). Solvent retention capacity values in relation to the Czech commercial wheat quality. Food Sci. Technol., 47, 2421-2428.
[48] Kaur, A., Singh, N., Kaur, S., Ahlawat. A.K., Singh, A.M. (2014). Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars. Food Chem., 158, 48-55.
[49] Al-Dmoor, H.M., Galali, Y. (2014). Prediction of wheat functionality by assessing dough and bread characteristics. J. Agric. & Environ. Sci., 14, 104-109.
[50] Ali, R., Khan, M.C., Sayeed, S.A., Ahmed, R., Sayeed, S.M.G., Mobin, L. (2014). Relationship of damaged starch with some physicochemical parameters in assessment of wheat flour quality. Pak. J. Bot., 46, 2217-2225.
[51] Hammed, A.M., Ozsisli, B., Ohm, J., Simsek, S. (2015). Relationship between solvent retention capacity and protein molecular weight distribushion, quality characteristics, and breadmaking functionality of hard red spring wheat flour. Cereal Chem., 92, 466-474.
[52] Cao, W., Falk, D., Bock, J.E. (2017). Protein Structural Features in Winter Wheat: Benchmarking Diversity in Ontario Hard and Soft Winter Wheat. Cereal Chem., 94, 199-206. 
[53] Mariotti, M., Lucisano, M., Pagani, M.A., Ng, P.K.W. (2016). Effects of dispersing media and heating rates on pasting profiles of wheat and gluten-free samples in relation to their solvent retention capacities and mixing properties. LWT - Food Sci. Technol., 66, 201-210.