تاثیر روش‌های استخراج خیساندن و فراصوت بر محتوای ترکیبات فنلی بره موم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه ایمنی و کنترل کیفیت مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

2 دانشیار، گروه شیمی مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

در این پژوهش مقدار ترکیبات فنلی کل موجود در عصاره بره‌موم حاصل از استخراج به دو روش خیساندن و فراصوت و نیز تأثیر روش استخراج بر نوع و مقدار هر یک از ترکیبات فنلی به روش کروماتوگرافی مایع با کارایی بالا (HPLC) بررسی شده است. استخراج به روش خیساندن در نسبت‌های مختلف بره موم به حلال اتانل 70% (10, 30, 50 % w/v) و در مدت‌‌های مختلف (2, 8, 24 h) انجام گرفت. استخراج به کمک فراصوت نیز در مدت‌‌های صوت‌دهی (7, 14, 21 min) و دامنه‌های نوسانی (60, 80, 100 %) انجام شد. بیشترین مقدار ترکیبات فنلی در عصاره بره‌موم از روش خیساندن در مدت استخراج 24 h و با نسبت 10 %w/v بره موم به حلال برابر با 44.82% بدست آمد. در حالی‌که، با روش اعمال فراصوت به مدت 21 min و با دامنه نوسانی 80% بیشترین ترکیبات فنلی برابر با 41.19% حاصل شد. شناسایی محتوی ترکیبات فنلی عصاره ها با استفاده از کروماتوگرافی مایع با کارایی بالا نشان داد که تعداد 15 ترکیب فنلی در عصاره بره موم حاصل از روش خیساندن مشخص شدند در حالی که در عصاره به دست‌آمده از روش فراصوت 13 ترکیب شناسایی شدند. بیشترین ترکیب بازیابی و شناسایی شده در عصاره بره‌موم از هر دو روش استخراج پینوسمبرین بود که مقدار آن در عصاره‌ها 15.1% در روش فراصوت و11.7% در روش خیساندن تعیین شد. نتایج کروماتوگرافی نشان داد که درصد هر یک از ترکیبات شناسایی شده در عصاره استخراج شده به روش فراصوت بیشتر از ترکیبات مشابه در روش خیساندن بود.

چکیده تصویری

تاثیر روش‌های استخراج خیساندن و فراصوت بر محتوای ترکیبات فنلی بره موم

تازه های تحقیق

  • عامل مدت استخراج صرف­نظر از نوع روش به­کار برده شده عاملی مهم و بسیار اثرگذار بر راندمان و کیفیت مواد استخراج شده  بود.
  • تعداد ترکیبات فنلی بیشتری از روش خیساندن نسبت به روش استخراج به کمک فراصوت استخراج شد.
  • درصد هر یک از ترکیبات فنلی استخراج شده از روش فراصوت بیش­تر از مقدار استخراج شده همان ترکیب به روش خیساندن به‌دست آمد.
  • پینوسمبرین، بیشترین ترکیب بازیابی و شناسایی شده در عصاره بره­موم از هر دو روش استخراج بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Maceration and Ultrasound Extraction Methods on the Content of Phenolic Compounds of Propolis

نویسندگان [English]

  • Bibi Marzieh Razavizadeh 1
  • Razieh Niazmand 2
1 Associate Professor of Chemistry, Department of Food Safety and Quality Control, Research Institute of Food Science and Technology, Mashhad, Iran
2 Associate Professor of Food Engineering, Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
چکیده [English]

In this study, the amount of total phenolic compounds in propolis extract obtained from extraction by two methods of maceration and ultrasound and also the effect of extraction method on the type and amount of each of phenolic compounds using chromatography method was investigated. Extraction by maceration method was carried out in different ratios (10, 30, 50% w/v) of propolis to ethanol solvent 70% at different time intervals (2, 8, 24 h). The ultrasonic extraction method was performed at different times (7, 14, 21 min) and vibrational amplitudes (60, 80, 100%). The maximum percentage of phenolic compounds in propolis extract was obtained from the maceration method applying the extraction time of 24 h and when the ratio of 10% w/v of propolis to solvent was 44.82%. However, with the ultrasonic method the maximum percentage obtained was at 21 min with a vibrational amplitude of 80%, where most of the phenolic compounds were obtained with 41.19%. Identification of phenolic compounds of extracts using high performance liquid chromatography showed that 15 phenolic compounds in the extract of propolis were obtained by maceration method, while 13 extracts were obtained by sonication. The highest recovery and identification components in propolis extract determined by both of the extraction methods was Pinocemberin, with 15.1% of extracts in the ultrasound method and 11.7% in the maceration method. The results of chromatography showed that the percentage of each of the compounds identified in the propolis extract which were extracted using ultrasound method, was higher than the ones extracted applying maceration method.

کلیدواژه‌ها [English]

  • Propolis
  • Total phenolic compound
  • Ultrasound
  • Maceration
  • Chromatography
[1]           Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng., 117, 426-436.

[2]           Bankova, V.S., Castro, S.L.d., and Marcucci, M.C. (2000). Propolis: recent advances in chemistry and plant origin. Apidologie, 3, 3-15.

[3]           Hanifi S., Ahmadi S., and Oromiehei A., (2013). Mechanical Properties and Biodegradability of Polypropylene/Starch Reinforced Nanoclay Blends. Iranian Journal of Polymer Science and Technology,    26, 139 - 148.

[4]           Chang, Chang, C.C., Yang, M.H., Wen, H.M,. Chern, J.C., (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal., 10, 178-182.

[5]          اشراقی، س.س.؛ والافر، ش.؛ (1382)  بررسی اثرات ضدباکتریایی بره‌موم (Propolis) کندوی عسل بر گونه های بیماریزای نوکاردیا. مجله دانشگاه علوم پزشکی و خدمات بهداشتی-درمانی شهید صدوقی یزد، جلد 11، شماره 2، ص 42-48. 

[6]           Khayyal, M.T., el-Ghazaly M.A., el-Khatib A.S., Hatem A.M., de Vries P.J., el-Shafei S., Khattab M.M. (2003). A clinical pharmacological study of the potential beneficial effects of a propolis food product as an adjuvant in asthmatic patients. Fund. Clin. Pharmacol., 17, 93-102.

[7]           Pastor, C., Sanchez-Gonzalez, L., Chafer, M., Chiralt, A., Gonzalez-Martinez, C., (2010). Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohyd. Polym., 82, 1174-1183.

[8]           Bruschi, M.L., Franco, S.L., and Gremião, M.P.D. (2003). Application of an HPLC Method for Analysis of Propolis Extract. J. Liq. Chromatogr. R. T., 26, 2399-2409.

[9]           González-Martín, M.I., Escuredo, O., Revilla, I., Vivar-Quintana, A. M., Coell, M. C., Riocerezo, C. P., and Moncada, G. W. (2015). Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy. Sensors, 15, 27854-27868.

[10]         Tosi, E.A., Re´, E., Ortega, M. E., Cazzoli, A. F. (2007). Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem., 104, 1025-1029.

[11]         Kumazawa, S., Hamasaka, T., and Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chem., 84, 329-339.

[12]         Sanpa, S., Sutjarittangtham, K., Tunkasiri, T., Eitssayeam, S., Chantawannakul, P. (2012). Antimicrobial Effect of Brazillian Propolis/Polycaprolactone Polymer on some Human Pathogenic Bacteria. Adv. Mat. Res., 506, 537-540.

[13]         Sanpa, S., Sutjarittangtham, K., Tunkasiri, T., Eitssayeam, S., Chantawannakul, P. (2012). Ultrasonic Extraction of Thai Propolis for Antimicrobial and Antioxidant Properties. Adv. Mat. Res., 506, 371-374.

[14]         Alvarez, M.V., Ponce,  A. G., Goyeneche, R.,  and   Moreira, M. R. (2017). Physical Treatments and Propolis Extract to Enhance Quality Attributes of Fresh-Cut Mixed Vegetables. J. Food Process. Pres., 41, e13127.

[15]         Toepfl, S.,  Toepfl,  S.,  Mathys,  A.,  Heinz, V. &  Knorr, D. (2006). Review: Potential of High Hydrostatic Pressure and Pulsed Electric Fields for Energy Efficient and Environmentally Friendly Food Processing. Food Rev. Int., 22, 405-423.

[16]         Pellati, F., Prencipe, F. P., Bertelli, D., Benvenuti, S. (2013). An efficient chemical analysis of phenolic acids and flavonoids in raw propolis by microwave-assisted extraction combined with high-performance liquid chromatography using the fused-core technology. J. Pharmaceut. Biomed., 81-82, 126-132.

[17]         Kaufmann, B. and Christen, P. (2002). Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem. Analysis, 13, 105-13.

[18]         Marr, R. and Gamse, T. (2000). Use of supercritical fluids for different processes including new developments—a review. Chem. Eng. Process., 39, 19-28.

[19]         Lang, Q. and Wai, C. M. (2001). Supercritical fluid extraction in herbal and natural product studies — a practical review. Talanta, 53, 771-782.

[20]         Trusheva, B., Trunkova, D., and Bankova, V. (2007). Different extraction methods of biologically active components from propolis: a preliminary study. Chemistry Cent. J., 1, 1-4.

[21]         Kubiliene, L., Laugaliene, V., Pavilonis, A., Maruska, A., Majiene, D., Barcauskaite, K., Kubilius, R., Kasparaviciene, G., Savickas, A. (2015). Alternative preparation of propolis extracts: comparison of their composition and biological activities. BMC Complem. Altern. M.,. 15, 156-162.

[22]      Herrera, M.C. and de Castro, M.D. (2005). Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. J. Chromatogr. A, 1100, 1-7.

[23]         Li, H., Pordesimo, L., and Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int., 37, 731-738.

[24]         Vilkhu, K., Mawson, R., Simons, L., Bates D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry — A review. Innov. Food Sci. Emerg., 9, 161-169.

[25]         Vinatoru, M., (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem., 8, 303-313.

[26]        پورفرزاد، ا.؛ حدادخداپرست، م. ح.؛ حبیبی نجفی، م . ب.؛   حسن زاده خیاط ، م؛. (1392) کارایی امواج فراصوت در استخراج فروکتان از غده سریش با استفاده از طرح باکس بنکن؛ پژوهش و نوآوری در علوم و صنایع غذایی، جلد (2)، شماره (3)، ص 219-228.

[27]       شلماشی، ا.؛ امانی، ف.؛ (1394) کاربرد سطح پاسخ در بهینه سازی استخراج روغن از مغز گردو و هسته میوه انبه با استفاده از امواج فراصوت. فناوری‌های نوین غذایی، جلد (3)، شماره (2)، ص  1-10.

[28]       روحانی، ر.؛ عین افشار، س.؛ و احمدزاده، ر.؛ (1394) استخراج ترکیبات آنتوسیانینی و آنتی اکسیدانی پرچم گل زعفران به کمک فناوری امواج فراصوت. پژوهش‌های علوم و صنایع غذایی ایران، جلد (2)، شماره (11)، ص  161-170.

[29]         de Lima, G.G., de Souza, R. O., Bozzi, A. D., Poplawska, M. A., Devine, D. M., Nugent, M. J. (2016). Extraction Method Plays Critical Role in Antibacterial Activity of Propolis-Loaded Hydrogels. J.  Pharm. Sci., 105, 1248-57.

[30]         Biscaia, D. and Ferreira, S.R.S. (2009) Propolis extracts obtained by low pressure methods and supercritical fluid extraction. J. Supercrit. Fluid., 51, 17-23.

[31]       Popova, M., Silici, S., Kaftanoglu, O., Bankova, V. (2005). Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine, 12, 221-228.

[32]     Lima, B., Tapia, A., Luna, L., Fabani, M. P., Schmeda-Hirschmann, G., Podio, N. S., Wunderlin, D. A., Feresin, G. E. (2009). Main flavonoids, DPPH activity, and metal content allow determination of the geographical origin of propolis from the Province of San Juan (Argentina). J. Agr. Food Chem., 57, 2691-2698.

 [33]        Association of Official Analytical, C. and Helrich, K. (1990). Official methods of analysis of the Association of Official Analytical Chemists., Arlington, VA: The Association.

[34]         Mello, B.C.B.S., Petrus, J.C.C., and Hubinger, M.D. (2010). Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J. Food  Eng., 96, 533-539.

[35]         Moreira, L., Dias, L.G., Pereira, J. A., Estevinho, L. (2008). Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food  Chem. Toxicol., 46, 3482-3485.

[36]         Dias, L.G., Pereira, A.P., and Estevinho, L.M. (2012). Comparative study of different Portuguese samples of propolis: Pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food Chem. Toxicol., 50, 4246-4253.

[37]         Choi, Y.M., Noh, D.O., Cho, S.Y., Suh, H.J., Kim, K.M., Kim, J.M. (2006). Antioxidant and antimicrobial activities of propolis from several regions of Korea. LWT - Food Science and Technology, 39, 756-761.

[38]         Da Silva, Carmen, F.C., Favaro-Trindade, S., de Alencar, S. M., Thomazini, M.,and Balieiro, J. C. C. (2011). Physicochemical properties, antioxidant activity and stability of spray-dried propolis. Vol. 3. 94-100.

[39]         Woisky, R.G. and Salatino, A. (1998).  Analysis of propolis: some parameters and procedures for chemical quality control. J.  Apicult. Res., 37, 99-105.

[40]         Tosic, S., Stojanovic, G., Mitic, S., Pavlovic, A., Alagic, S. (2017).  Mineral Composition of Selected Serbian Propolis Samples. Vol. 61.

[41]         Hossain, M.B., Brunton, N.P., Patras, A,. Tiwari, B., O'Donnell, C.P., Martin-Diana, A.B., Barry-Ryan, C. (2012). Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrason. Sonochem., 19, 582-590.

[42]         Yang, L., Yan, Q.H., Ma, J.Y., Wang, Q., Zhang, J.W., and Xi, G.X. (2013). High Performance Liquid Chromatographic Determination of Phenolic Compounds in Propolis. Tropical J. Pharmaceut. Res., 12, 771-776.

[43]         Kosalec, I., Bakmaz, M., and Pepeljnjak, S. (2003). Analysis of propolis from the continental and Adriatic regions of Croatia. Acta Pharm., 53, 275-85.

[44]       اونق، ع.؛ توکمه­چی، ا.؛ ادیب حسامی، م.؛ ابراهیم­زاده، س.؛ (1389) مطالعه تاثیر عصاره الکلی بره‌موم (پروپولیس) حاصل از کندوهای زنبور عسل آذربایجان غربی علیه رشد قارچ­های درماتوفیت و غیر درماتوفیت و آنالیز ترکیبات سازنده آن با روش GC-MS. مجله پزشکی ارومیه، جلد (21)، شماره (3)، ص 206-214.

[45]         Volpi, N. and Bergonzini, G. (2006). Analysis of flavonoids from propolis by on-line HPLC–electrospray mass spectrometry. J. Pharmaceut. Biomed., 42, 354-361.