قابلیت بینی الکترونیک با حسگرهای اکسید فلزی تحت مدولاسیون دمایی در تشخیص منشاء جغرافیایی ادویه جات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکترا، گروه مهندسی مکانیک بیوسیستم ، دانشکده کشاورزی، دانشگاه شهرکرد

2 دانشیار، گروه مهندسی مکانیک بیوسیستم ، دانشکده کشاورزی، دانشگاه شهرکرد

3 استادیار، گروه مهندسی علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد

4 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک بیوسیستم ، دانشکده کشاورزی، دانشگاه شهرکرد

5 استادیار، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

6 استادیار، گروه مهندسی مکانیزاسیون، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

ادویه علاوه‌بر تاثیر در طعم و کیفیت مواد غذایی، به دلیل خواص ضد میکروبی یا آنتی اکسیدانی عمر ماندگاری مواد غذایی را نیز فزایش می‌دهد.گونه‌های مختلف ادویه‌ها بر اساس محل رویش، کیفیت و ارزش اقتصادی متفاوتی دارند. بنابراین طبقه-بندی و جداسازی آن‌ها براساس منشاء جغرافیایی مورد توجه مصرف‌کنندگان و فروشندگان بوده و از اهمیت بالایی برخوردار است. در این پژوهش توانایی کاربرد بینی الکترونیک بر پایه حسگرهای نیمه‌هادی اکسید فلزی به عنوان ابزاری غیرمخرب برای تشخیص منشاء جغرافیایی (هند، چین و پاکستان) سه ادویه فلفل سیاه، دارچین و زردچوبه مورد مطالعه قرار گرفت. مدولاسیون دمایی به صورت الگوی ولتاژ سینوسی انجام شد و پاسخ گذرای حسگرها برای تحلیل داده‌ها مورد بررسی قرار گرفت. تحلیل مولفه‌های اصلی(PCA) ، تحلیل تفکیک خطی(LDA)، ماشین بردار پشتیبان (SVM) و شبکه‌های عصبی مصنوعی (ANN) روش‌هایى بودند که برای رسیدن به این هدف مورد استفاده قرار گرفت. نتایج نشان داد که تصویر داده‌ها با استفاده از روش PCA به صورت کاملا واضح خوشه‌های مجزایی را بر روی فضای تغییر شکل یافته PC ایجاد کرد. با کاربرد روش‌های LDA، SVM و ANN در تفکیک بر اساس منشاء جغرافیایی برای هر سه ادویه، دقت طبقه‌بندی %100 بدست آمد. همچنین از صحت‌سنجی مدل‌های مذکور دقت %100 حاصل گردید. بنابراین می‌توان نتیجه گرفت که بینی الکترونیک مبتنی بر حسگرهای نیمه‌هادی اکسید فلزی تحت مدولاسیون دمایی در ترکیب با روش‌های کمومتریکس (شیمی سنجی) می‌تواند ابزار موثر و کارآیی در طبقه‌بندی سریع و غیر‌مخرب نمونه‌های فلفل سیاه، دارچین و زردچوبه بر اساس منشاء جغرافیایی باشد.

چکیده تصویری

قابلیت بینی الکترونیک با حسگرهای اکسید فلزی تحت مدولاسیون دمایی در تشخیص منشاء جغرافیایی ادویه جات

تازه های تحقیق

  • تشخیص منشاء جغرافیایی ادویه­جات با استفاده از بینی الکترونیک
  • مدولاسیون دمایی حسگرهای گازی نیمه هادی اکسید فلزی
  • استخراج ویژگی­ از الگوهای پاسخ حسگرها و تفکیک نمونه‌ها بر اساس منشاء جغرافیایی با استفاده از روش­های­کمومتریک

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Potential of electronic nose based on temperature-modulated metal oxide gas sensors for detection of geographical origin of spices

نویسندگان [English]

  • Mojtaba Tohidi 1
  • Mahdi Ghasemi-Varnamkhasti 2
  • Mahdi Ghasemi-Nafchi 3
  • Mojtaba Naderi boldaji 2
  • Faezeh Jamalizadeh 4
  • Seyed Mohammad Safieddin Ardebili 5
  • Mahdi Khani 6
1 PhD, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University
2 Associate Professor, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University
3 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Shahrekord University
4 MSc student, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University
5 Assistant Professor, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahid Chamran University of Ahvaz
6 Assistant Professor, Faculty of Agriculture, University of Gilan
چکیده [English]

Spices in addition to effect on the taste and quality of food, it also increases the shelf-life of foods because of its antimicrobial or antioxidant properties. Different types of spices have various quality and economic value based on their geographical origin. Therefore, classification and separation based on geographic origin are of great interest to consumers and sellers and is particular importance. In this research, the ability of an electronic nose based on metal oxide semiconductor sensors as a non-destructive tool for detecting the geographical origin (India, China and Pakistan) of three spices of black pepper, cinnamon and turmeric was studied. Temperature modulation was performed as a sinusoidal voltage pattern and transient responses of sensors were analyzed for data analysis. Principal component analysis (PCA), linear discriminant analysis (LDA), support vector machine (SVM) and artificial neural network (ANN) were the methods used to achieve this goal. The results showed that the data visualization using the PCA method, created a completely distinct cluster on the PC's deformed space. By using the LDA, SVM and ANN methods, the classification accuracy was 100% based on the geographical origin for all three spices. Also, verification of these models was carried out and accuracy of 100% was achieved. Therefore, we can conclude that the electronic nose based on metal oxide semiconductor sensors under temperature modulation and in combination with the chemometrics methods as an effective and efficient tool can be used for fast and non-destructive classification of black pepper, cinnamon and turmeric samples based on geographical origin.

کلیدواژه‌ها [English]

  • Electronic nose
  • Temperature modulation
  • Spice
[1] Peter, K. V. (2012). Handbook of Herbs and Spices, 2nd ed., Woodhead Publishing: Cambridge, U.K, pp 215-248.
[2] Banach, U., Tiebe, C., Hübert, T. (2012). Multigas sensors for the quality control of spice mixtures. Food Control., 26, 23-27.
[3] Ghasemi-Varnamkhasti M., Tohidi M., Mishra P., Izadi Z. (2018). Temperature modulation of electronic nose combined with multi-class support vector machine classification for identifying export caraway cultivars. Postharvest Biol Tec., 138, 134–139.
[4] Liu, H., Zeng, F., Wang, Q., shiyi, O., Gu, F. (2013). The effect of cryogenic grinding and hammer milling on the flavour quality of ground pepper (Piper nigrum L.). Food Chem., 141, 3402–3408.
[5] Colak, H., Baris, E., Hampikyan, H., Nazli, B. (2006). Determination of Aflatoxin Contamination in Red-Scaled, Red and Black Pepper by ELISA and HPLC. J Food Drug Anal., 14, 292-296.
[6] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Ahmadi, H., Razavi, S.H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Eng. Agric. Environ. Food., 8, 44-51
[7] Figen, F., Balaban, M. (2008). Electronic nose technology in food analysis: In Handbook of food analysis instruments, 1st ed, CRC Press Taylor & Francis Group, Boca Raton, pp 365-378.
[8] Peris, M., Escuder-Gilabert, L. (2009). A 21st century technique for food control: electronic noses. Analytica Chimica Acta., 638, 1-15.
[9] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Rodriguez-Mendez, M.L., Lozano, J., Razavi, S.H., Ahmadi, H. (2011b). Potential application of electronic nose technology in brewery. Trends Food Sci. Technol., 22, 165–174.
[10] Zhang, H., Balaban, M., Principe, J. C., Portier, K. (2005). Quantification of spice mixture compositions by electronic nose. J. Food Sci., 70, 253-258.
[11] Loutfi, A., Coradeschi, S., Mani, G.K., Shankar, P. Rayappan, J.B. (2015). Electronic noses for food quality: a review. J. Food Eng., 144, 103–111.
[12] Monroy, J.G., Gonźalez-Jiḿenez, J., Blanco, J.L. (2012). Overcoming the slow recovery of MOX gas sensors through a system modeling approach. ACS Sens., 12, 13664–13680.
[13] Herrero-Carrón, F., Yánez, D.J., Rodríguez, F. (2015). An active, inverse temperature modulation strategy for single sensor odorant classification. Sens. Actuators, B., 555–563.
[14] Nakata S. and Okunishi H. (2005). Characteristic responses of a semiconductor gas sensor depending on the frequency of a periodic temperature change. Appl. Surf. Sci., 240: 366- 374.
[15] Ngo, K.A., Lauque, P., Aguir, K. (2007). High performance of a gas identification system using sensor array and temperature modulation. Sens. Actuators, B., 209–216.
[16] Hossein-Babaei F. and Amini A. (2014). Recognition of complex odors with a single generic tin oxide gas sensor. Sens. Actuators, B., 194:156-163
[17] Smulko J. M., Trawka M., Granqvist C.G., Ionescu R., Annanouch F., Llobet E. and Kish L.B. (2015). New approaches for improving selectivity and sensitivity of resistive gas sensors: a review. Sensor Review, 35, 340-347.
[18] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Ahmadi, H., Razavi, S.H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Eng. Agric. Environ. Food., 8, 44-51.
[19] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Bonyadian, M., Mohtasebi, S. (2018). Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int. Dairy J., 77, 38–46.
[20] توحیدی، م.؛ قاسمی ورنامخواستی، م.؛ غفاری نیا، و.؛ محتسبی، س.س.؛ بنیادیان، م.؛ (1395). ساخت و توسعه یک سامانه ماشین بویایی در ترکیب با روش‌های شناسایی الگو برای تشخیص تقلب فرمالین در شیر خام. مهندسی بیوسیستم ایران، جلد 47، شماره 4، ص 1-10.
[21] Azid, S.I., Kumar, S. (2011). Analysis and Performance of a Low Cost SMS Based Home Security System. Int. J. Smart Home, 5, 15-24.
[22] Ghasemi-Varnamkhasti, M., Safari Amiri, Z., Tohidi, M., Dowlati, M., Mohtasebi, S.C., Silva, A.D.S., Fernandes, D., Araujo, M. (2018). Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta, 176, 221–226.
[23] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Bonyadian, M., Mohtasebi, S. (2018).Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: A novel method. Measurement, 124, 120-129.
[24] Aleixandre, M.J., Lozano, J., Gutiérrez, I., Sayago, M.J., Fernández Horrillo, M.C. (2008). Portable e-nose to classify different kinds of wine. Sens. Actuators, B., 131 (1), 71–76.
[25] Yu, H., Wang, J., Xiao, H., Liu, M. (2009). Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sens. Sens. Actuators, B., 378–382.
[26] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S.H.
Dicko, A. (2012). Discriminatory power assessment of the sensor array of an electronic ose system for the detection of non alcoholic beer aging. Czech J Food Sci, 30, 236–240.
[27] صفری امیری، ز.؛ قاسمی ورنامخواستی، م.؛ توحیدی، م.؛ محتسبی، س.س.؛ دولتی، م. (1396). استفاده از سامانه ماشین بویایی به­منظور تشخیص تقلب در زیره کوهی. علوم و فناوری­های نوین غذایی، جلد 5، شماره 3، ص 527- 541.
[28] Amari, A. El., Bari, N., Bouchikhi, B. (2007). Electronic nose for anchovy freshness monitoring based on sensor array and pattern recognition methods: principal components analysis, linear discriminant analysis and support vector machine. Int J Found Cpmput S., 6, 61–67.
[29] Balasubramanian, S., Panigrahi, S., Logue, C.M., Marchello, M. (2009). Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. J. Food Eng., 91, 91–98.
[30] Omid, M., Mahmoudi, A. Omid, M. H. (2009). An intelligent system for sorting pistachio nut varieties. Expert Syst. Appl., 36, 11528–11535.
[31] Oliveros, C.C., Pavon, J.L.P., Pinto, C.G., Laespada, E.F., Cordero, B.M., Forina, M. (2002). Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal. Chim. Acta., 459, 219–228.
[32] Carmona, M., Martinez, J., Zalacain, A., Rodriguez-Mendez, M.L., de Saja, J.A., Alonso, G.L. (2006). Analysis of saffron volatile fraction by TD–GC–MS and e-nose. Eur. Food Res. Technol., 223, 96–101.
[33] Baby, R.E., Sance, M.M., Bauzá, M., Messina, V.M., Gómez, A.R., Burba, j.L. (2009). Electronic nose study of powdered garlic. Sens. Trans. J., 107, 26–34.
[34] Tahri, K., Tiebe, C., Bougrini, M., Saidi, T., El Alami-El Hassani, N., El Bari, N., Hübert, T., Bouchikhi, B. (2015). Characterization and discrimination of saffron by multisensory systems, SPME-GC-MS and
UV-vis spectrophotometry. Anal. Methods., 7, 10328–10338.