تشخیص تقلب پوره کدو در رب گوجه فرنگی با استفاده از آرایه حسگری گازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد

2 دانشیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد

3 استادیار، گروه مهندسی میکرو الکترونیک، دانشکده مهندسی، دانشگاه لورن

4 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

گوجه فرنگی دومین محصول پرطرفدار در سطح جهان است که اغلب به صورت تازه مصرف می‌شود. یکی از مهمترین فرآورده های گوجه فرنگی، رب می‌باشد که مهم‌ترین چاشنی در غذاهای ایرانی به‌شمار می‌آید بنابراین سلامت رب گوجه‌فرنگی از اهمیت ویژه ای برخوردار است. بررسی تقلب در رب گوجه فرنگی انگیزه اصلی انجام پژوهش حاضر بود. برای این منظور یک سامانه ماشین بویایی مبتنی بر پنج حسگر گازی (TGS2600, TGS2620, MQ3, TGS880, TGS2610) ساخته شد و پتانسیل آن در شناسایی سطوح مختلف تقلب پوره کدو حلوایی در رب گوجه فرنگی (0، 5، 10، 15 و 20 درصد) ارزیابی گردید. تفکیک رب خالص از نمونه‌های تقلب بر اساس بوی حاصل از نمونه‌ها در فضای هد نمونه و دریافت بو توسط حسگرها صورت گرفت. برای طبقه‌بندی و تحلیل ویژگی‌های مستخرج از پاسخ حسگرها، از روش‌های تحلیل مولفه اصلی (PCA)، تحلیل تفکیک خطی (LDA)، ماشین بردار پشتیبان (SVM) و حداقل مربعات جزئی (PLS) استفاده شد. نتایج PCA و PLS حاکی از پوشش 99 و 94 درصد از واریانس داده‌ها با دو مولفه اصلی بود. بر اساس نتایج تحلیل مولفه اصلی، حسگرهایTGS2610 و MQ-3 بیشترین و حسگر TGS880 کمترین اهمیت را در تشخیص تقلب رب داشتند. دقت طبقه بندی با روش LDA، 07/79 درصد بدست آمد. تابع چند جمله ای با دقت 77/87 درصد آموزش و 66/76 درصد اعتبارسنجی در روش C-SVM و تابع پایه شعاعی با دقت 84/98 درصد آموزش و 14/88 درصد اعتبارسنجی در روش Nu–SVM بیشترین دقت طبقه بندی را داشتند. در مجموع سیستم ماشین بویایی عملکرد قابل قبولی در تفکیک سطوح مختلف تقلب داشت.

چکیده تصویری

تشخیص تقلب پوره کدو در رب گوجه فرنگی با استفاده از آرایه حسگری گازی

تازه های تحقیق

  • یک سامانه ماشین بویایی مبتنی بر پنج حسگر TGS2600،TGS2620 ،MQ3 ،TGS880  و TGS2610به­منظور بررسی تقلب کدو در رب گوجه­فرنگی ساخته شد.
  • روش­های تحلیل مولفه­های اصلی (PCA) و حداقل مربعات جزئی (PLS) به ترتیب 99 و 94% از واریانس داده‌ها را پوشش دادند.
  • در روش SVM-C، تابع چند جمله­ای با دقت ٧٧/٨٧% آموزش و ٦٦/٧٦% اعتبارسنجی بالاترین دقت طبقه بندی را داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Detection of pumpkin puree adulteration in tomato paste using a gas sensor array

نویسندگان [English]

  • Ayat Mohammad-Razdari 1
  • Mahdi Ghasemi-Varnamkhasti 2
  • Seyedeh Hoda Yoosefian 1
  • Maryam Siadat 3
  • Zahra Izadi 4
  • Sajad Rostami 2
1 Ph.D. student, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University, Shahrekord
2 Associate Professor, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University
3 Assistant Professor, Department of Microelectronics Engineering, Faculty of Engineering, University of Lorraine
4 Assistant Professor, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University
چکیده [English]

Tomato is the second most important crop in the world, which is often consumed freshly. One of the most importance tomato products is paste that considered being the stuffing ingredient in Iranian foods. Therefore, the safety of tomato paste is so important. The aim of this study was diagnosis adulteration in tomato paste. For this purpose, olfactory machine system based on five gas sensors (TGS2600, TGS2620, MQ3, TGS880, TGS2610) was constructed and its potential was evaluated in determining the different levels of pumpkin adulteration in tomato paste (0, 5, 10, 15 and 20%). Pure tomato paste detection from adulteration samples was based on the samples smell in the head space and the receipt of smell by sensors. The principal component analysis (PCA), linear discriminant analysis (LDA), support vector machine (SVM) and partial least squares (PLS) were used to classify and analyze the extracted features of the sensor response. Results of PCA and PLS indicated that 99 and 94 percent of data variance was covered by two main components. TGS2610 and MQ-3 sensors and TGS880 sensor had the highest and lowest application in detection of tomato paste adulteration. The accuracy of the classification by the LDA method was 79.7%. The polynomial function with accuracy of 77.78% of the training and 76.66% validation in the C-SVM method and the radial base function with a precision of 98.8% of the training and 88.14% of Validation in the Nu-SVM method had the highest classification accuracy. In total, the olfactory machine system had acceptable performance in separation of different levels of adulteration.

کلیدواژه‌ها [English]

  • Olfactory Machine
  • Adulteration
  • Pattern Recognition
  • Tomato Paste
[1] Hong, X., & Wang, J. (2014). Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. J. Food Eng., 126, 89-97.

[2] Rizwan, M., Rodriguez-Blanco, I., Harbottle, A., Birch-Machin, M.A., Watson, R.E.B., Rhodes, L.E. (2011). Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Brit. J. Dermatol., 164, 154-162.

[3] Burton-Freeman, B., Talbot, J., Park, E., Krishnankutty, S., Edirisinghe, I. (2012). Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol. Nutr. Food Res., 56, 622-631.

[4] Zhang, L., Schultz, M.A., Cash, R., Barrett, D.M., McCarthy, M.J. (2014). Determination of quality parameters of tomato paste using guided microwave spectroscopy. Food Control., 40, 214-223.

[5] Biondi, A., Guedes, R. N. C., Wan, F. H., & Desneux, N. (2018). Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu rev entomol., 63, 239-258.

[6] Liu, C., Hao, G., Su, M., Chen, Y., & Zheng, L. (2017). Potential of multispectral imaging combined with chemometric methods for rapid detection of sucrose adulteration in tomato paste. J. Food Eng., 215, 78-83.

[7] Hong, X., Wang, J., & Qi, G. (2014). Comparison of spectral clustering, K-clustering and hierarchical clustering on e-nose datasets: application to the recognition of material freshness, adulteration levels and pretreatment approaches for tomato juices. Chemom. Intell. Lab. Syst., 133, 17-24.

[8] Du, L., Lu, W., Cai, Z. J., Bao, L., Hartmann, C., Gao, B., & Yu, L. L. (2018). Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics. Food chem., 240, 573-578.

[9] Sciuto, S., Esposito, G., Dell'Atti, L., Guglielmetti, C., Acutis, P. L., & Martucci, F. (2017). Rapid Screening Technique to Identify Sudan Dyes (I to IV) in Adulterated Tomato Sauce, Chilli Powder, and Palm Oil by Innovative High-Resolution Mass Spectrometry. J Food Prot., 80(4), 640-644.

[10] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S.H. & Dicko, A. (2011). Aging fingerprint characterization of beer using electronic nose. Sens. Actuator B-Chem., 159, 51– 59.

 [11] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S.H. & Dicko, A. (2012). Discriminatory power assessment of the sensor array of an electronic nose system for the detection of nonalcoholic beer aging. Czech J. Food Sci, 30(3), 236–240.

[12] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Ahmadi, H.& Razavi, S.H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Engineering in Agriculture, Envir. Food., 8, 44-51.

[13] Men, H., Shi, Y., Jiao, Y., Gong, F., & Liu, J. (2018). Electronic nose sensors data feature mining: a synergetic strategy for the classification of beer. Anal. Methods., 10, 2016-2025.

[14] Ghasemi-Varnamkhasti, M., Tohidi, M., Mishra, P., & Izadi, Z. (2018). Temperature modulation of electronic nose combined with multi-class support vector machine classification for identifying export caraway cultivars. Postharvest Biol Technol., 138, 134-139.

[15] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Bonyadian, M., & Mohtasebi, S. S. (2018). Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int Dairy J., 77, 38-46.

[16] Haddi, Z., Alami, H., ElBari, N., Tounsi, M., Barhoumi, H., Maaref, A., Jaffrezic-Renault,N. & Bouchikhi, B. (2013). Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Res Int., 54, 1488–1498.

[17] Ghasemi-Varnamkhasti, M., Amiri, Z. S., Tohidi, M., Dowlati, M., Mohtasebi, S. S., Silva, A. C., & Araujo, M. C. (2018). Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta., 176, 221-226.

[18] Tahri, K., Tiebe, C., El Bari, N., Hübert, T., & Bouchikhi, B. (2017). Geographical classification and adulteration detection of cumin by using electronic sensing coupled to multivariate analysis. Proc. Technol., 27, 240-241.

[19] Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2017). Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Comput Electron Agric., 141, 46-53.

[20] Jolayemi, O. S., Tokatli, F., Buratti, S., & Alamprese, C. (2017). Discriminative capacities of infrared spectroscopy and e-nose on Turkish olive oils. Eur Food Res Technol., 243(11), 2035-2042.

[21] Ordukaya, E., & Karlik, B. (2017). Quality Control of Olive Oils Using Machine Learning and Electronic Nose. J Food Quality, 17, 1-7.

 [22] Baskar, C., Nesakumar, N., Rayappan, J. B. B., & Doraipandian, M. (2017). A framework for analysing E-Nose data based on fuzzy set multiple linear regression: Paddy quality assessment. Sens Actuators A Phys., 267, 200-209.

[23] Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement., 124, 447-452.

[24] Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement., 82, 105-114.

 [25] Esteki, M., Farajmand, B., Kolahderazi, Y., & Simal-Gandara, J. (2017). Chromatographic Fingerprinting with Multivariate Data Analysis for Detection and Quantification of Apricot Kernel in Almond Powder. Food Anal Method., 10, 3312-3320.

[26] Varmuza K, Filzmoser P. (2009). Introduction to multivariate statistical analysis in chemometrics. 1st Edition. CRC Press, Boca Raton. pp 1-336.

[27] Smola AJ, Schölkopf B. (2004). A tutorial on support vector regression. Stat Comput., 14: 199–222.

[28] Mabood, F., Hussain, J., Jabeen, F., Abbas, G., Allaham, B. A., Albroumi, M., & Haq, Q. M. (2018). Applications of FT-NIRS combined with PLS multivariate methods for the detection & quantification of saccharin adulteration incommercial fruit juices. Food Addit Contam. 35(6), 1052-1060.

[29] Geladi P, Kowalski BR. (1986). Partial least-squares regression: a tutorial. Anal Chim Acta., 185(6):1–17.

 [30] Oussama, A., Elabadi, F., Platikanov, S., Kzaiber, F., & Tauler, R. (2012). Detection of olive oil adulteration using FT-IR spectroscopy and PLS with variable importance of projection (VIP) scores. J Am Oil Chem Soc., 89, 1807-1812.

 [31] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Mohtasebi, S. S., & Bonyadian, M. (2018). Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: A novel method. Measurement. 124, 120-129.

[32] Bhattacharyya N., Bandhopadhyay R. (2010) Electronic Nose and Electronic Tongue. In: Jha S. (eds) Nondestructive Evaluation of Food Quality. Springer, Berlin, Heidelberg: pp 73-100.