استفاده از پردازش تصاویر رنگی و روش سطح پاسخ در تخمین تازگی گوشت مرغ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک بیوسیستم، دانشگاه لرستان، خرم آباد، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک بیوسیستم، دانشگاه لرستان، خرم آباد، ایران

3 دانشیار، مهندسی مکانیک بیوسیستم، دانشگاه لرستان، خرم آباد، ایران

4 دانش اموخته دکترا، گروه مهندسی مکانیک ماشینهای کشاورزی، دانشگاه تهران

چکیده

اهمیت گوشت مرغ بعنوان یک ماده غذایی سالم و مغذی برای مردم سراسر جهان قابل ملاحظه است. لذا بررسی کیفیت آن برای مصرف از ارزش بسزایی برخوردار است. هدف اصلی مطالعه حاضر تشخیص تازگی گوشت مرغ از طریق تخمین زمان سپری شده از ذبح به کمک روش‌های پردازش تصویر و سطح پاسخ می‌باشد. برای رسیدن به این هدف، قسمت ران مرغ بعنوان نمونه مورد بررسی انتخاب و در دمای ˚c4 یخچال نگهداری شد و در زمان‌های تعیین شده تصاویر مورد نظر تهیه گردید. پس از اینکه ویژگی‌های آماری بافت تصاویر از کانال‌های مختلف رنگی استخراج شد، با بکارگیری روش آنالیز حساسیت، ویژگی‌های موثر در زمان سپری شده از ذبح انتخاب گردید. در پایان روش سطح پاسخ برای طراحی و بهینه سازی مدل‌های رگرسیونی به منظور تخمین مدت زمان سپری شده پس از ذبح بکار رفت. شاخص‌های آماری بکار رفته برای اعتبار سنجی مدل‌های رگرسیونی بهینه شده شامل فاکتور‌هایR-Squared ، Adj R-Squared، Pred R-Squared، RMSE و Press RMSE است. مقادیر این شاخص‌ها برای قسمت باپوست مرغ (بهینه شده) به ترتیب 901/0، 899/0، 898/0، 31/27 و 44/27 و برای قسمت بدون بدون پوست مرغ (بهینه شده) به ترتیب 866/0، 865/0، 864/0، 66/29 و7/29 بدست آمد. نتایج قابل قبول بدست آمده نشان می‌دهد که روش‌های پردازش تصویر و سطح پاسخ به خوبی قابلیت تشخیص زمان سپری شده از ذبح را دارند.

چکیده تصویری

استفاده از پردازش تصاویر رنگی و روش سطح پاسخ در تخمین تازگی گوشت مرغ

تازه های تحقیق

  • از ترکیب روش­های پردازش تصاویر رنگی و روش سطح پاسخ در تخمین تازگی گوشت مرغ استفاده گردید.
  • با بکارگیری روش آنالیز حساسیت، ویژگی­های موثر در زمان سپری شده از ذبح انتخاب گردید.
  • روش سطح پاسخ برای طراحی و بهینه سازیمدل­های رگرسیونی به منظور تخمین مدت زمان سپری شده پس از ذبح بکار رفت. 
  • نتایج نشان می­دهد که روش­های پردازش تصویر و سطح پاسخبه خوبی قابلیت تشخیص زمان سپری شده از ذبح را دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of the chicken meat freshness using of color image processing and response surface methods

نویسندگان [English]

  • Amin Taheri-Garavand 1
  • Soodabeh Fatahi 2
  • Feizollah Shahbazi 3
  • Amin Nasiri 4
1 Assistant Professor, Mechanical Engineering of Biosystems Department, Lorestan University, Khorramabad, Iran
2 MSc Student, Mechanical Engineering of Biosystems Department, Lorestan University, Khorramabad, Iran
3 Associate Professor, Mechanical Engineering of Biosystems Department, Lorestan University, Khorramabad, Iran
4 Ph.D. Graduated, Department of Mechanical Engineering of Agricultural Machinery, University of Tehran, Iran
چکیده [English]

The importance of chicken meat as a safe and nutrient food product is considerable for people all over the world. So checking of its quality has the great value. Therefore, the main objective of the current study is the diagnosis of chicken meat freshness using the estimation of elapsed time from slaughter helping of image processing and response surface methods. In order to achieve this goal, chicken thighs were selected as the case study and they were stored in the fridge temperature and desired images were prepared at the specified times. After that statistical features of texture images were extracted of different color channels, by application of sensitivity analysis method, effective features were selected in elapsed time from slaughter. At the end response surface method was applied to design and optimize the regression models in order to estimate the elapsed time from slaughter. The applied statistical indicators for validation of optimized regression models include R-Squared ، Adj R-Squared، Pred R-Squared، RMSE and Press RMSE. The value of these indicators for the with skin part of chicken meat (optimized) were obtained 0.901, 0.899, 0.898, 27.31 and 27.44 and for the skinless part of chicken meat (optimized) were 0.866, 0.865, 0.864, 29.66 and 29.7. The acceptable obtained results indicate that image processing and response surface methods have the ability to diagnosis the elapsed time from slaughter as well.

کلیدواژه‌ها [English]

  • chicken meat
  • Image Processing
  • Sensitivity analysis
  • Response surface methodology
[1] Ellis, D. I., & Goodacre, R. (2001). Rapid and quantitative detection of the microbial spoilage of muscle foods: Current status and future trends. Trends in Food Science &Technology, 12, 414−424.
[2] Kamruzzaman, M., ElMasry, G., Sun, D.-W., Allen, P. (2012). Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis, Anal. Chim. Acta 714 57–67.
[3] Cai, J., Chen, Q., Wan, X., Zhao, J. (2011). Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy. Food Chem. 126, 1354–1360.
[4] Tao, F., Peng, Y., Li, Y., Chao, K., Dhakal, S. (2012). Simultaneous determination oftenderness and Escherichia coli contamination of pork using hyperspectral scattering technique.Meat Sci. 90, 851–857.
[5] Xiong, Z., Sun, D.-W., Pu, H., Xie, A., Han, Z., Luo, M. (2015). Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chemistry, 179, 175–181.
[6]Ramirez, R., Cava, R. (2007). The crossbreeding of different Duroc lines with the Iberian pig affects      colour and oxidative stability of meat during storage. Meat Science, 77, 339–347.
[7] Li, H., Kutsanedzie, F., Zhao, J., & Chen, Q., (2016). Quantifying Total Viable Count in Pork Meat Using Combined Hyperspectral Imaging and Artificial Olfaction Techniques. Food Analytical Methods, 9(11), 3015–3024.
[8] Chmiel, M., Słowinski, M. (2016). The use of computer vision system to detect pork defects. LWT - Food Science and Technology, 73, 473-480.   
[9] Ma, J., Sun, D.-W., Qu, J.-h., Liu, D., Pu, H., Gao, W.-h., Zeng, X.a. (2015). Applications of computer vision for assessing quality of agri-food products: a review of recent research advances. Food Science and Nutrition, 56(1): 113-127.
[10] Amza, C. G., Cicic, D. T. (2015). Industrial image processing using fuzzy-logic. Procedia Engineering, 100, 492-498.
[11] کارگذاری، م. (1386). بهینه­سازی خشک کردن اسمزی هویج با استفاده از روش سطح پاسخ. پایان­نامه دوره کارشناسی ارشد علوم و صنایع غذایی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران.
[12] فتاحی، س؛ طاهری گراوند، ا؛ شهبازی، ف. ا. (1396). تخمین تازگی گوشت مرغ مبتنی بر تکنیکهای پردازش تصویر و هوش مصنوعی. مهندسی بیوسیستم ایران، دوره 48 ، شماره 4، ص 503-491.
 [13] جوادی­کیا، ح؛ قاسمی ورنامخواستی، م؛ سبزی، س. (1396). تشخیص تازگی گوشت گوساله به کمک پردازش تصویر و سطح پاسخ. نشریه پژوهشهای علوم و صنایع غذایی ایران، جلد 13 ، شماره 2، ص261-251.
[15] Shi, Z., He, L. (2010). Application of neural networks in medical image processing, In: Proceedings of the 2nd International Symposium on Networking and Network Security, (pp. 2-4), Jinggangshan, China.
[16] García-Mateosa, G., Hernández-Hernándezc, J.L., Escarabajal-Henarejosb, D., Jaén-Terronesa, S.  Molina-Martínez. J.M. (2015). Study and comparison of color models for automatic image analysis in irrigation management, applications, Agricultural Water Management, 151, 158–166.
[17] Zhou, X., Yuan, J. & Liu, H. (2015).  A Traffic Light Recognition Algorithm Based On Compressive Tracking.  International Journal of Hybrid Information Technology, 8(6), 323-332.
[18] Rotaru, C., Graf, T., & Zhang, J. (2008). Color image segmentation in HSI space for automotive applications. Journal of Real-Time Image Processing, 3, 311-322.
[19] Dowlati, M., Mohtasebi, S. S., de la Guardia, M. (2012). Application of machine-vision techniques to fish-quality assessment, Trends in Analytical Chemistry, 40, 168-179.
 [20]Leon, K., Mery, D., Pedreschi, F., Leon, J. (2006). Color measurement in L*a*b* units from RGB digital image. Food Research International, 39 (10), 1084–1091.
[21] Forsyth, D., Ponce, J. (2003). Computer Vision: A Modern Approach. Prentice Hall, New Jersey.
Forsyth, D. A., & Ponce, J. (2003). A modern approach. Computer vision: a modern approach, 88.
[22] Hosseinpour, S., Rafiee, Sh., Mohtasebi, S.S., Aghbashlo, M. (2013). Application of computer vision technique for on-line monitoring of shrimp color changes during drying. Journal of Food Engineering 115 (1), 99–114.
 [23] Dowlati, M., Mohtasebi, S. S., Omid, M., Razavi, S. H., Jamzad, M., & De La Guardia, M. (2013). Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. Journal of Food Engineering, 119(2), 277-287.
[24] Khulal, U., Zhao, J., Hu, W., & Chen, Q. (2016). Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms. Food chemistry, 197, 1191-1199.
[25] Montgomery, DC. Design and analysis of experiments. 2017. Jon wiley and sons.