تولید نیمه پیوسته لیپید و کاروتنوئید با استفاده از مخمر رودوترولا گلوتینیس از باگاس نیشکر پیش‌فرآوری شده

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه مهندسی علوم و صنایع غذایی، دانشکده کشاورزی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 استادیار، گروه مهندسی مکانیزاسیون کشاورزی و بیوسیستم، دانشکده کشاورزی، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران

3 استادیار، گروه میکروبیولوژی، دانشکده پرستاری و مامایی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

تبدیل منابع ارزان و فراوان لیگنوسلولزی به مواد ارزشمندی مانند لیپید و کاروتنوئید در دهه گذشته مورد توجه فراوان قرار گرفته است. در این تحقیق پس از بهینه‌سازی فرآیند پیش‌فرآوری باگاس نیشکر، تولید دو ماده با ارزش لیپید و کاروتنوئید در یک کشت نیمه‌پیوسته با استفاده از مخمر ردوترولا گلوتینیس (Rhodotorula glutinis) مورد ارزیابی قرار گرفت.
در این پژوهش تأثیر دو عامل غلظت اسید نیتریک (10-5/0%) و زمان نگهداری حرارتی (180-5 دقیقه) بر فرآیند پیش‌فرآوری (کاهش لیگنین) و هیدرولیز (آزادسازی قندهای احیاء) باگاس نیشکر بررسی، و با استفاده از روش رویۀ پاسخ مقدارهای بهینه تعیین گردیدند. سپس پتانسیل تولید لیپید و کاروتنوئید در بسترهای حاصل از پیش‌فرآوری و هیدرولیز، مقایسه شدند. آزمایش‌های فرآیند تخمیر در سرعت چرخش rpm150، دمای c˚25 و 5/5pH = انجام گردید.
مقدار بهینه غلظت اسید نیتریک و زمان نگهداری در فرآیند پیش‌فرآوری به ترتیب، %67/6 و 75/118 دقیقه برآورد، و کاهش لیگنین در بخش جامد به میزان %4/93 اندازه‌گیری شد. همچنین مقدار بهینه غلظت اسید نیتریک و زمان نگهداری حرارتی در فرآیند هیدرولیز اسیدی به ترتیب، %5/0و 180 دقیقه برآورد گردید، که در نتیجه آن مقدار بیشینه g/l57/15 قند آزاد گردید. محتوای لیپید در محیط‌های‌کشت حاوی گلوکز (به عنوان مرجع)، عصاره حاصل از هیدرولیز اسیدی و سامانه پیش‌فرآوری، هیدرولیز و تخمیر جداگانه (SHF) به ترتیب، 06/1±33/27، 34/1±52/19، 76/0±43/15 درصد وزن خشک سلولی برآورد شدند. علاوه برآن، محتوای کاروتنوئید در محیط کشت های ذکر شده به‌ترتیب 67±168، 14±99 و 13±189 (g/gµ وزن خشک سلول) اندازه‌گیری شد. مهمترین اسیدهای چرب تولیدی اسید اولئیک و پالمیتیک بودند. همچنین از دیدگاه مهندسی، شاخص‌های فیزیکی لیپید تولیدی با استفاده از روابط استاندارد موجود، تعیین و ارائه گردیدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fed-batch Lipid and Carotenoid Production by Rhodotrula glutinis from Pretreated sugarcane bagasse

نویسندگان [English]

  • Maryam Banikhaled 1
  • Nima Nasirian 2
  • Roya Zekavati 3
1 MSc student, Department of food engineering, Ahwaz Branch, Islamic Azad University, Ahwaz, Khoozestan, Iran
2 Assistant professor, Department of Agricultural Mechanization and Biosystem Engineering, Faculty of Agriculture, Shoushtar Branch, Islamic Azad University, Shoushtar Iran
3 Assistant professor, Department of Microbiology, faculty of nursing and midwifery, Ahwaz Branch, Islamic Azad University, Ahwaz, Khoozestan, Iran
چکیده [English]

Lipid and carotenoid synthesis from cheap and abundant lignocellulosic resources has received increased attention in the past decade. This research explores the application of reducing sugar from sugarcane bagasse pretreated with nitric acid for the co-production of lipid and carotenoid by yeast, Rhodotorula glutinis. In this study, the influence of heating time (5-180 min) and nitric acid concentration (0.5-10%) on pretreatment of sugarcane bagasse (lignin reduction) and hydrolysis (fermentable sugars) was examined at 121 °C and the optimized values were determined by response surface methodology (RSM). Subsequently, lipid and carotenoid production by Rhodotrula glutins were scrutinized from the acquired substrate of acid hydrolysis and separate hydrolysis and fermentation (SHF) processes at 25 °C, pH=5.5 during 72 hours post inoculation. Once acid concentration and heating time were 6.67% and 118.75 min, respectively, the optimized value of lignin reduction of 93.4% was obtained. In addition, maximum value of 15.57 g/L of reducing sugar was achieved when the acid concentration and heating time were 0.5% and 180 min, respectively. The lipid content in glucose fed-culture, hydrolysate medium and SHF bioprocess were 27.33±1.06%, 19.52±1.34% and 15.43±0.76% of dry cell weight (dcw), In addition, the carotenoid content of 168±67 µg/g dcw, 99±14 µg/g dcw and 189±13 µg/g dcw, were obtained from corresponding substrates, respectively. The most important fraction of fatty acid methyl esters were palmitic and oleic acid. In addition, from the engineering point of view, the physical properties values of produced lipid from all the substrates, were determined.

کلیدواژه‌ها [English]

  • Lipid
  • Carotenoid
  • Pretreatment
  • Sugarcane Bagasse
  • Hydrolysis
  • Rhodotorula glutinis
 [1] Brar, K.K., Sarma, A.K., Aslam, M., Polikarpov, I., Chadha, B.S. (2017). Potential of oleaginous yeast Trichosporon sp. for conversion of sugarcane bagasse hydrolysate intobiodiesel. Bioresour. Technol., 242, 161-168.

[2] احمدی، ک.؛ قلیزاده، ح.؛ عبادزاده، ح.؛ حاتمی، ف.؛ فضلی استبرق، م.؛ حسین پور، ر.، کاظمیان، آ.؛ و رفیعی، م. (1395). آمارنامه کشاورزی سال زراعی94-1393. چاپ اول، وزارت جهادکشاورزی، معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات.

 [3] Alfenore, S., Molina-Jouvea, C. (2016). Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochem, 51, 1747–1756.

 

[4] Atabani, A., Silitonga, A., Badruddin, I., Mahlia, T., Masjuki, H., Mekhilef, S.A. (2012). Comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev., 16, 2070–2093.

 

[5] Luna-Floresb, C.H., Ramírez-Cordovaa, J.J., Pelayo-Ortizb, C., Fematc, R., Herrera-Lópeza, E.J. (2010). Batch and fed-batch modeling of carotenoids production by Xanthophyllomyces dendrorhous using Yucca fillifera date juice as substrate. Biochem. Eng. J., 53, 131-136.

 

[6] Liang, Y., Jarosz, K., Wardlow, A.T., Zhang, J., Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Appl. Biochem. Biotechnol., 173, 2086-2098.

 

[7] Xavier, M.C.A., Coradini, A.L.V., Deckmann A.C., Franco T.T. (2017). Lipid production from hemicellulose hydrolysate and acetic acid by Lipomyces starkeyi and the ability of yeast to metabolize inhibitors. Biochem. Eng. J., 118, 11–19.

 

[8] Karamerou, E.E., Theodoropoulos, C., Webb, C. (2016). A biorefinery approach to microbial oil production from glycerol by Rhodotorula glutinis. Biomass and Bioenerg., 89, 113-122.

 

[9] Tsigie, Y.A., Wang, C.H.Y., Truong C.T., Ju, Y.H. (2012). Lipid Production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour. Technol., 102, 9216-9222.

 

[10] Liu, Y., Wang, Y., Liu, H., Zhang, J. (2015). Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresour. Technol., 180, 32–39.

 

[11] Ruan, Z., Zanotti, M., Wang, X., Ducey, C.H., Liu, Y. (2012). Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour. Technol., 110, 198–205.

 

[12] Liang, Y., Tang, T., Umagiliyage, A.L., Siddaramu, T., McCarroll, M., Choudhary, R. (2012). Utilization of sorghum bagasse hydrolysates for producing microbial lipids. Appl. Energ., 91, 451–458.

 

[13] Wang, B., Rezenom, Y.H., Cho, K.C.H., Tran, J.L., Lee, D.G., Russell, D.H., Gill, J.J., Young, R., Chu, K.H. (2014). Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresour. Technol., 161, 162–170.

 

[14] Karatay, S.E., Donmez, G. (2010). Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour. Technol., 101, 7988–7990.

 

[15] Taski Ortucu, S., Aydogan, M.N., Arslan, N.P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renew. Energ., 99, 198-204.

 

[16] Vieiraa, J.P.F., Ienczak, J.L., Costaa, P.S., Rossell, C.E.V., Francoa, T.T., Pradella, J.G.C. (2016). Single cell oil production integrated to a sugarcane-mill:Conceptualdesign, process specifications and economic analysis using molassesas raw material. Ind. Crop. Prod., 89, 478–485.

 

[17] Xue, F., Miao, J., Zhang, X., Luo, H., Tan, T. (2008). Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour. Technol., 99, 5923–5927.

 

[18] Schneider, T., Graeff-Hönninger, S., French, W.T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M., Pham, P. (2013). Lipid and carotenoid production by oleaginous red yeast Rhodotorul glutinis cultivated on brewery effluents. Energy, 61, 34-44.

 

[19] Kitchaa, S., Cheirsilp, B. (2014). Bioconversion of lignocellulosic palm byproducts into enzymes and lipid by newly isolated oleaginous fungi. Biochem. Eng. J., 88, 95–100.

 

[20] Patel, A., Sindhu, D.K., Arora, N., Singh, R.P., Pruthi, V., Pruthi, P.A. (2015). Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour. Technol., 197, 91–98.

 

[21] Jin, M., Slininger, P.J., Dien, B.S., Waghmode, S., Moser, B.R., Orjuela, A., Sousa, L.D.C., Balan, V. (2015). Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol., 33, 43-54.

 

[22] Kim, I., Seo, Y.H., Kim, G.Y., Han, J.I. (2015). Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid. Fuel, 143, 285–289.

 

[23] Nasirian, N., Almassi, M., Minaei, S., Widmann, R. (2011). Development of a method for biohydrogen production from wheat straw by dark fermentation. Int. J. Hydrogen Energ., 36, 411-420.

 

[24] Rabelo, S.C., Andrade, R.R., Filho, R.M., Costa, A.C. (2014). Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel, 136, 349–357.

 

[25] Hu, F., Ragauskas, A. (2012). Pretreatment and Lignocellulosic Chemistry. Bioenerg. Res, 5, 1043–1066.

 

[26] Yen, H.W., Chang, J.T. (2015). Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source. J. Biosci. Bioeng., 119, 580-584.

 

[27] Laopaiboon, P., Thani, A., Leelavatcharama, V., Laopaiboon, L. (2010). Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol., 101,1036–1043.

 

[28] Gamez, S., Gonzalez-Cabriales, J.J., Ramırez, J.A., Garrote, G., Vazquez, M. (2006). Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J. Food Eng., 74, 78–88.

 

[29] Zeng, J., Zheng, Y., Yu, X., Yu, L., Gao, D., Chen, S. (2013). Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresour. Technol., 128, 385–391.

 

[30] Liu, W., Wang, Y., Yu, Zh., Bao, J. (2012). Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum. Bioresour. Technol., 118, 13–18.

 

[31] Kumar, S., Dheeran, P., Singh, S.P., Mishra, I.M., Adhikari, D.K. (2015). Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renew. Energ., 83, 850-858.

 

[32] Sangyoka, S., Reungsang, A., Lin, C.Y. (2016). Optimization of biohydrogen production from sugarcane bagasse by mixed cultures using a statistical method. Sustainable Environment Research, 26, 235-242.

 

[33] Chong, A.R., Ramırez, J.A., Garrote, G., Vazquez, M. (2004). Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng., 61, 143–152.

 

[34] David, G.F., Perez, V.H., Justo, O.R., Garcia-Perez, M. (2017). Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. Bioresour. Technol., 223, 74–83.

 

[35] Cheng, Y.T., Yang, C.F. (2016). Using strain Rhodotorula mucilaginosa to produce carotenoid susing food wastes. J. Taiwan Inst. Chem. Eng., 61, 270-275

 

[36] انشاییه، م.؛ عبدلی، آ.؛ نحوی، ا.؛ و مدنی، م. 1391. تبدیل زیستی هیدرولیز چمن به روغن تک یاخته و بیودیزل با استفاده از رودوتورولا موسیلاژینوزا، مجله علمی- پژوهشی زیست فناوری میکروبی دانشگاه آزاد اسلامی. دوره 4، شماره 13، ص 44-37.

[37] Nemailla, B., Aline, C., Carvalho, V.A.J., Alves, M.E. (2017). Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem., 57, 16-25.

 

[38] Rabelo, S.C., Amezquita Fonseca, N.A., Andrade, R.R., Maciel Filho, R., Costa, A.C. (2011). Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. biomass bioenergy., 35, 2600-2607.

 

[39] Canilha, L., Almeida, J.B., Felipe, M.G.A., Carvalho, W. (2003). Batch xylitol production from wheat straw hemicellulosic hydrolysate using Candida guilliermondii in a stirred tank reactor. Biotechnol. Let. 25, 1811-1814.

 

[40] Martins, L.H.D.S., Rabelo, S.C., Costa, A.C. (2015). Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour. Technol., 191, 312–32.

 

[41] Ehrman, C.I., Himmel, M.E. (1994). Simultaneous Saccharification and Fermentation of Pretreated Biomass: Improving Mass Balance Closure. Biotechnol. Techniques. 8, 99-104.

 

[42] Saqib, A.A.N., Whitney, P.J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugar. Biomass Bioenerg. 35, 47-50.

 

[43] نصیریان، ن. (1396). تولید ناپیوسته لیپید با استفاده از مخمر مولد لیپید Rhodosporidium diobovatum و محاسبه خصوصیات فیزیکی بیودیزل تولیدی با استفاده از پروفایل اسیدهای چرب، مجله مهندسی زراعی، دوره 40، ص 155-168.

 

[44] Wang, Y.C., Chuang, Y.C., Hsu, H.W. (2008). The flavonoid carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem., 106, 277–284.

 

[45] Lee, J.N., Lee, D.Y., Ji, I.H. (2001). Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem, 65, 837-841.

 

[46] Razavi, H., Marc, I. (2003). Isolation of a new strain of Sporobolomyces ruberrimus for the production of carotenoids, using technical glycerol as carbon source. In: Proceeding of the 11th Int. European Cong. on Biotechnol. (pp. 24-29), Basel, Switzerland.

 

[47] Carvalho, L.M.J.D., Gomes, P.B., Godoy, R.L.D.O., Pacheco, Monte, P.H.F.D., Carvalho, J.L.V.D., Nutti, M.R., Neves, A.C.L., Vieira, A.C.R.A., Ramos, S.R.R. (2012). Total Carotenoid Content,α-carotene and β-carotene, of Iandrace pumpkins (Cucurbita moschata Duch): A Preliminary study. Food Res. Int., 47, 337-340.

 

[48] Montgomery, D.C. (2001). Design and Analysis of Experiments. 5th ed., John, Wiley and Sons, Inc, NewYork, pp 427–500.

 

[49] Capecchia, L., Galbeb, M., Barbantia, L., Wallberg, O. (2015). Combined ethanol and methane production using steam pretreated sugar cane bagasse. Ind. Crop. Prod., 74, 255–262.

 

[50] Kumaria, S., Das, D. 2015. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process. Bioresour. Technol., 194, 354–363.

 

[51] Huang, Q., Yan, Q., Fu, J., Lv, X., Xiong, Ch., Lin, J., Liu, Z. (2016). Comparative study of different alcoholate pretreatments for enhanced enzymatic hydrolysis of sugarcane bagasse. Bioresour. Technol., 211, 464–471.

[52] موسوی نسب، م.؛ نصیری، م.؛ نعمت الهی، ز. (1390). بررسی بازدهی تولید کاروتنوئید توسط Rhodotorula glutinis در سوبسترا حاوی ملاس نیشکر با استفاده از دستگاه HPLC. مجموعه مقالات هفتمین همایش ملی بیوتکنولوژی، تهران، ص 36-30.

[53] احمدزاده، ص.؛ کدیور، م.؛ سعیدی، ق. (1388). بررسی خصوصیات روغن و ترکیب دانه در تعدادی از لاین‌ها و واریته‌های گلرنگ. نشریه پژوهش‌های صنایع غدایی ایران، جلد 5، شمارآ 2، ص 150-136.