تدوین و ارزیابی مدل های عصبی مصنوعی بمنظور برآورد مقادیر L*a*b* با استفاده از مقادیر RGB تصاویر رنگی به کمک بینایی رایانه ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشگاه تربیت مدرس

2 استاد، دانشگاه تربیت مدرس

چکیده

با توجه به نیاز استفاده از مقادیر رنگی L*، a* و b* به همراه دیگر پارامترهای رنگی از جمله مقادیر R، G و B در کاربردهای کنترل کیفیت رنگی مواد غذایی و کشاورزی، در این پژوهش روشی هوشمند بر پایه سامانه بینایی ماشین ، شبکه‌های عصبی مصنوعی MLP و روش‌ آماری چند متغیره PLS برای تخمین مقادیر L*a*b* از مقادیر RGB تصاویر رنگی نمونه‌های مختلف زعفران تدوین گردید. تصاویر رنگی از 33 نمونه مختلف زعفران (165 تصویر) و از صفحات رنگی استاندارد (150 تصویر) تهیه شدند. به کمک سامانه بینایی ماشین توسعه داده شده تصاویر نمونه‌ها دریافت و با استفاده از الگوریتم‌های پردازش تصویر، پردازش و ویژگی‌های رنگی RGB آنها استخراج گردید. از سوی دیگر ویژگی‌های L*a*b* نمونه‌ها توسط دستگاه رنگ‌سنج (به روش هانتر لب) اندازه‌گیری شدند. مقادیر RGB و تبدیلات خطی آنها به عنوان ورودی مدل‌ها و مقادیر مرتبط L*، a* و b* به ترتیب به عنوان خروجی و هدف مدل‌ها در نظر گرفته شدند. در نهایت نتایج نشان داد که مدل‌های MLP با دقت بالاتری و ضرایب رگرسیون مناسب‌تری نسبت به مدل‌های PLS مقایر L*، a* و b* نمونه-های زعفران را تخمین می‌زنند (R2=0.99 و RMSE بترتیب برابر با 769/0، 953/0 و 785/0 برای تخمین هر سه ویژگی L*، a* و b*). در نهایت می‌توان امکان استفاده از سامانه بینایی ماشین را برای کنترل کیفیت رنگی زعفران بیان کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development and evaluation of artificial neural models for RGB to L*a*b* color feature transformation using machine vision system

نویسندگان [English]

  • Sajad Kiani 1
  • Saeid Minaei 2
1 Ph.D student of Biosystems Engineering Department. Tarbiat Modares University, Tehran, Iran
2 Professor of Biosystems Engineering Department. Tarbiat Modares University, Tehran, Iran
چکیده [English]

In this study an intelligent system based on machine vision, Multilayer Perceptron (MLP) artificial neural network and Partial Least Square (PLS) models was developed to estimate the L*, a*, and b* values for saffron samples utilizing their RGB color values. Color images of 33 saffron samples (165 images) and 150 color images of standard colored plates were captured utilizing the developed machine vision system. In order to extract RGB parameters, the images were processed using image processing algorithms. Also, L*a*b* values of each sample was measured using a commercial colorimeter (Hunter Lab, color Flex, USA) in triplicate and the measurements were averaged to obtain the final values. RGB values and their linear transformations were set as the inputs of the models and L*, a*, and b* values were set as model outputs, respectively. Experimental results showed that the performance of MLP models were better than those of PLS, with high correlation coefficients of cross validation (R2 and RMSE values equal to 99% and 0.769, 0.953, and 0.785, respectively). Finally, it can be stated the capability of machine vision technology for color quality evaluation of saffron.

کلیدواژه‌ها [English]

  • prediction
  • Image Processing
  • saffron
  • L*a*b*
 [1] Wu, D., Sun, D.W. (2013). Color measurements by computer vision for food quality control-a review. Food Sci. Technol. 29 (1), 5-20.

[2] Mendoza, F., & Aguilera, J.M. (2004). Application of image analysis for classification of ripening bananas. J. Food Sci, 69, 471-477.

[3] Larrain, R.E., Schaefer, D.M., Reed, J.D. (2008). Use of digital images to estimate CIE color coordinates of beef. Food Res. Int, 41, 380-385.

[4] Yagiz, Y., Balaban, M.O., Kristinsson, H.G., Welt, B.A., & Marshall, M.R. (2009). Comparison of Minolta colorimeter and machine vision system in measuring color of irradiated Atlantic salmon. J. Sci. Food Agric. 89, 728-730.

[5] Martin, M.L.G.M., Ji, W., Luo, R., Hutchings, J., Heredia, F.J. (2007). Measuring color appearance of red wines. Food Qual. Prefer. 18, 862-871.

 [6] Fernandez-Vazquez, R., Stinco, C.M., Melendez-Martinez, A.J., Heredia, F.J., & Vicario, I.M. (2011). Visual and instrumental evaluation of orange juice color: a consumers' preference study. J. Sens. Stud, 26, 436-444.

[7] Shafiee, S., Minaei, S., Moghaddam-Charkari, N., & Barzegar, M. (2014). Honey characterization using computer vision system and artificial neural networks. Food Chemistry, 159, 143–150.

[8] Oliveira, E. M, de., Leme, D. S., Barbosa, B. H. G., Rodarte, M. P., Pereira, R. G. F. A. (2016). A computer vision system for coffee beans classification based on computational intelligence techniques. JFE, 171, 22-27.

[9] Sanz-Uribe, J.R., Ramos-Giraldo, P.J., Oliveros-Tascon, C.E. (2008). Algorithm to identify maturation stages of coffee fruits. In: World Congress on Engineering and Computer Science, WCECS '08. Advances in Electrical and Electronics Engineering - IAENG Special Edition of the, 167-174.

[10] Sliwinska, M., Wisniewska, P., Dymerski, T., Namiesnik, J & Wardencki. W. (2014). Food Analysis Using Artificial Senses, J. Agric. Food Chem, 62, 1423−1448.

 [11] Chen, Q., Zhang, Z., Pan, W., Ouyang, Q., Li, H., Urmila, K., & Zhao, J. (2015). Recent developments of green analytical techniques in analysis of tea’s quality and nutrition. Trends in Food Science & Technology, 43, 63-82.

[12] Kiani, S., Minaei, S. (2016a). Potential Application of Machine Vision Technology to Saffron (Crocus sativus L) Quality Characterization, Food Chemistry, 212, 392-394.

[13] CIE. (1986). Colorimetry, second edition. CIE Central Bureau Kegelgasse Publication, Wien, Austria. 27 (15), A-1030.

 [14] Du, C., Sun, D. (2005). Comparison of three methods for classification of pizza topping using different color spaces transformations. Journal of Food Engineering, 68, 277–287.

[15] Leon, K., Mery, D., Pedreschi, F., Le on, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Res. Int. 39, 1084-1091.

[16] Kiani, S., Minaei, S., & Ayyari, M. (2016b). A non-destructive intelligent technique for color-based saffron quality characterization using computer vision. 5th International Congress on Medicinal Plants, 18-19 May, 2016, Esfahan, Iran.

[17] Marquardt, D. (1963). An algorithm for least squares estimation of non-linear parameters, J. Soc. Indust. Appl. Math. 11, 431–441.

[18] Patel, H.K. (2014). The Electronic Nose: Artificial Olfaction Technology, Springer.

 [19] Scott, S.M., James, D., Ali, Z. (2007). Data analysis for electronic nose systems, Microchim. Acta, 156, 183–207.

[20] Brainard, D. H. (2003). Color appearance and color difference specification. In S. K. Shevell (Ed.), the science of color, second edition, 191–216. Amsterdam: Elsevier Science Ltd.