اثر مونت موریلونیت (MMT) بر مشخصه های ساختاری، نوری و حرارتی فیلم نانوکامپوزیتی نشاسته سیب زمینی تولید شده در ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استادیار، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، مشهد

3 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز.

چکیده

در این تحقیق با استفاده از روش قالب­ریزی، فیلم­های نانوبیو­کامپوزیتی نشاسته سیب­زمینی نرم­شده با گلیسرول حاوی چهار سطح نانورس مونت­موریلونیت(0، 5/0، 1 و 2% وزنی- وزنی نشاسته) تولید شدند. نتایج آزمون گرماسنجی پویشی تفاضلی (DSC)، افزایش دماهای ذوب و انتقال شیشه­ای و بهبود خواص حرارتی نانوبیو­کامپوزیت در اثر افزودن نانورس را نشان داد. حضور 5 درصد نانورس در فیلم نشاسته سبب افزایش دمای انتقال شیشه­ای و ذوب از °C 6/185 و °C 9/282 فیلم PS به ترتیب به °C 5/203 و °C 6/304 شده است. آزمون­ طیف­سنجی UV-Vis، برای مطالعه اثر حفاظتی فیلم­های نانوبیوکامپوزیتی PS-MMT در مقابل پرتو­های نور فرابنفش و مرئی مورد استفاده قرار گرفت. افزودن 5 درصد نانورس اثر معنی­داری بر پارامترهای رنگی (L*، b* و a*)، اختلاف رنگ کلی () و اندیس سفیدی نداشت اما اندیس زردی را به طور معنی­داری کاهش داد. با افزایش غلظت MMT در ساختار فیلم به 5 درصد، تغییر معناداری در میزان عبور پرتوهای نور مرئی و کدورت مشاهده نگردید اما میزان عبور پرتوهای فرابنفش نواحی UV-C، UV-B و UV-A به ترتیب بیش از  82، 38 و 11 درصد کاهش ­یافتند. بررسی ساختار شیمیایی، خواص توپوگرافی، زبری و فازی فیلم­های نانوبیو­کامپوزیتی توسط آزمون­های طیف­سنجی­ فروسرخ (FT-IR) و میکروسکوپ نیروی اتمی (AFM) به­ترتیب وجود پیوندهای هیدروژنی بین اجزاء تشکیل دهنده فیلم و پخش یکنواخت نانوصفحات رس در ماتریس نشاسته را نشان داد. از تصاویر توپوگرافی AFM برای مطالعه مورفولوژی و زبری سطحی استفاده شد. فیلم PS دارای سطحی صاف و حداقل پارمترهای زبری بود. حضور 5 درصد نانورس سبب افزایش متوسط زبری (Ra) و انحراف معیار پروفیل ارزیابی شده (Rq) فیلم نشاسته خالص نرم شده از 4/32 و 9/39 نانومتر به­ترتیب به 119 و 147 نانومتر گردید. تصاویر فازی AFM توزیع یکنواخت نانورس در ماتریس نشاسته را تأیید نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Montmorillonite (MMT) on Structural, Thermal and Optical Properties of Iranian Potato Starch Based Nanobiocomposite Films

نویسندگان [English]

  • S. Amir Oleyaei 1
  • A. Akbar Moayedi 2
  • Babak Ghanbarzadeh 3
1 Ph.D Candidate of Food Engineering, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Seed and Plant Improvement Institute, Crop Science Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
3 Professor of Food Chemistry, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

In the present study, potato starch nanobiocomposites films plasticized with glycerol and containing four different montemorrillonite loading (0, 1, 3 and 5 wt% starch) were prepared via solution casting method. Differential scanning calorimetry (DSC) confirmed that the melting point and glass transition temperatures were increased and heat stability of the nanocomposites were improved. Upon 5% MMT loading, the glass transition and melting point of PS film were increased from 185.6  and 282.9  to 203.5 and 304.6, respectively. Colorimetry and UV-Vis spectroscopies were employed to evaluate the UV and visible-shielding efficiency of the PS-MMT nanocomposite films. Incorporationof 5% MMT did not have significant effect on color parameters (L*, b* and a*), color differences (E) and whitness index, but decrease yellow index of the films. Presence of 5% MMT in film formulation successfully blocked more than 82, 38 and 11% of UV-A, UV-B and UV-C lights, while opacity and transparency of the films were unchanged. Investigation of chemical structure of nanobiocomposite films by Fourier-transform infrared spectroscopy (FT-IR) and Atomic force microscopy (AFM) and revealed the hydrogen bonds interactions between MMT and starch and uniform dispersion of MMTplatelets in the starch matrix, respectively. Also, AFM topography images were used to study the surface morphology and roughness of starch films. Plasticized starch (PS) film had smoother surfaces and a lower roughness parameter. Adding MMT to starch matrix caused to increase the average roughness (Ra) and the most frequently quantitative parameters of roughness (Rq) from 32.4 nm and 39.9 nm in PS film to 119 nm and 147 nm in PS-5%MMT, respectively. The AFM phase images described the uniformity of the starch-MMT mixtures.

کلیدواژه‌ها [English]

  • Starch
  • Montmorillonite
  • Nanostructure
  • Thermal and Optical Properties
  • Colorimetry
[1] اولیایی، س. ا، قنبرزاده، ب، مؤیدی، ع. ا، پورثانی، پ. خاتمیان، م. (1394). تولید و بررسی نانوساختار و خواص فیزیکوشیمیایی فیلم زیست­ کامپوزیت نشاسته حاوی نانوذرات TiO2. فصلنامه فناوری­های نوین غذایی، سال دوم، شماره 8، 101-87.

[2] عربستانی، ا. کدیور، م. شاهدی، م. گلی، س. ا. ح. (1392). بررسی برخی خصوصیات ساختاری و فعالیت آنتی­اکسیدانی فیلم پروتئینی دانه گاودانه و تأثیر آن بر شاخص­های اکسیداسیون روغن آفتابگردان. فصلنامه فناوری­های نوین غذایی، سال اول، شماره 2، 14-3.

[3] Vergnaud, J. M. (1998). Problems encountered for food safety with polymer packages: chemical exchange, recycling. Adv. Colloid Interface Sci., 78, 267-297.

[4] Zolfi, M., Khodaiyan, F., Mousavi, M. Hashemi, M. (2014). Development and characterization of the kefiran-whey proteinisolate-TiO2 nanocomposite films. Int. J. Biol. Macromol, 65, 340–345.

[5] Oleyaei, S. A., Zahedi, Y., Ghanbarzadeh, B., & Moayedi, A. A. (2016). Modification ofphysicochemical and thermal properties of starch films by incorporation ofTiO2nanoparticles. Int. J. Biol. Macromol, 89,256–264.

[6] Ghanbarzadeh, B., Almasi H., Oleyaei, S. A. (2014). A Novel Modified Starch/Carboxy­ Methyl Cellulose/Montmorillonite Bionanocomposite Film: Structural and Physical Properties, Int. J. Food Eng., 10 (1): 121–130.

[7] Haugaard, V.K. & Mortensen, G. (2003). Biobased food packaging. J. Food Sci., 68, 824-835.

[8] Waterschoot, J., Gomand, S. V., Fierens E., Delcour, J. A. (2014). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke, 66, 1–16.

[9] Ghanbarzadeh, B., Oleyaei, S. A., Almasi H. (2015). Nano-Structured Materials Utilized in Biopolymer based Plastics for Food Packaging Applications. Crit. Rev. Food Sci. Nutr., 55:1699–1723.

[10] Almasi, H., Ghanbarzadeh, B., Entezami, A.A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 46, 1, 1-5.

[11] Kreyling, W.G., Semmler-Behnke, M., & Chaudhry, Q. (2010). A complementary definition of nanomaterial. Nano Today, 5, 165-168.

 [12] Silvestre, C., Duraccio, D. & Cimmino, S., (2011). Food packaging based on polymer nanomaterials. Prog. Polym. Sci., 36, 12, 1766-1782.

[13] Majdzadeh-Ardakani, K., Navarchian, A. H. & Sadeghi, F. (2010). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites, Carbohyd. Polym., 79, 547–554.

[14] Sadegh-Hassani, F., & Mohammadi Nafchi, A. (2014). Preparation and characterization of Bionanocomposite films based on potato starch/halloysitenanoclay. Int. J. Biol. Macromol., 67, 458–462.

[15] Perez-Mateos, M., Montero, P., Gomez-Guillen, M.C. (2009). Formulation and stability of biodegradable films made from cod gelatinand sunflower oil blends. Food Hydrocoll., 23, 53–61.

[16] Sothornvit, R., Rhim, J. W., Hong, S.I. (2009). Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J. Food Eng., 91, 468–473.

[17] Tunç, S., Duman, O. (2011). Preparation of active antimicrobial methyl cellulose/carvacrol/ montmorillonitenanocomposite films and investigation of carvacrol release. LWT-Food Sci. Technol.,44, 465-472.

[18] Ibrahim, S.M., (2010). Characterization, Mechanical, and Thermal Properties of Gamma Irradiated Starch Films Reinforced with Mineral Clay. J. Appl. Polym. Sci., 119, 685–692.

[19] Bozanic, D. K., Djokovic V., Bibic, N., Sreekumari Nair, P., Georges, M. K., & Radhakrishnan, T., (2009). Biopolymer-protected CdSe nanoparticles. Carbohydr. Res., 344, 2383–2387.

[20] Ning, W., Xingxiang, Z., Na, H & Shihe. B., (2009). Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohyd. Polym., 76, 68–73.

[21] Cyras, V. P., Manfredi, L. B., Ton-That, M. & Vazquez, A., (2008). Physiacal and mechanical properties of thermoplastic starch/ montmorillonite nanocomposite films. Carbohyd. Polym., 73, 55-63.

[22] Liu, H., Chaudhary, D., Yusa, S. & Tadé, M.O. (2010). Glycerol/starch/Na+-montmorillonite nanocomposites: A XRD, FTIR, DSC and 1H NMR study. Carbohyd. Polym., 83, 4, 1591-1597.

[23] Kumar, P., Sandeep, K.P., Alavi, S. & Truong, V.D., (2011). A Review of Experimental and Modeling Techniques to Determine Properties of Biopolymer-Based Nanocomposites. J. Food Sci., 76, 1, 1-13.

[24] Aouada, F.A., Mattoso, L.H.C. & Elson, L., (2011). New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind. Crops. Prod., 34, 1502–1508.

[25] Wilhelm, H. M., Sierakowski, M. R., Souza, G. P., Wypych, F., 2003. Starch fims reinforced with mineral clay. Carbohyd. Polym., 52, 101-110.

[26] Almasi, H., Ghanbarzadeh, B., & Entezami, A.A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol., 46, 1, 1-5.

[27] Kumar, P., Sandeep, K.P., Alavi, S., Truong, V.D., & Gorga, R.E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion, J. Food Eng., 100, 480–489.

[28] اولیایی، س. ا. (1391). تولید و مقایسه ویژگی­های فیزیکی نانوبیوکامپوزیت­های نشاسته حاوی نانورس و نانوذرات تیتانیم­دی اکسید، پایان‌نامه کارشناسی ارشد صنایع غذایی، دانشگاه تبریز، دانشکده کشاورزی.

[29] Rhim, J.W., (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohyd. Polym., 86, 691– 699.

[30] Hoang-Minh, T., Le, T.H., Kasbohm, J. & Gieré, R., (2010). UV-protection characteristics of some clays. Appl. Clay. Sci., 48, 349–357.

[31] Hoang-Minh, T., Le, T.H., Kasbohm, J. & Gieré, R., (2011). Substituting non-natural agents in UV-protection cream by a mixture of clay with Ganoderma pfeifferi extract. Appl. Clay. Sci., 53, 66–72.

[32] Bruna, J.E., Penaloza, A., Guarda, A., Rodriguez, F., & Galotto, M.J., (2012). Development of Mt Cu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Appl. Clay. Sci., 58, 79-87.