مدل‌سازی و بهینه‌سازی فعالیت ضد رادیکالی ترکیبات استخراج‌شده به کمک امواج فراصوت از برگ گیاه زولنگ (Eryngium caucasicum Trautv)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه زنجان

2 استادیار، دانشکده کشاوزی، دانشگاه زنجان

چکیده

روش ‌شناسی سطح - پاسخ یک مجموعه از تکنیک‌های آماری و ریاضیات کاربردی برای ساخت مدل‌های تجربی است. در این پژوهش از روش ‌شناسی سطح - پاسخ بر اساس طرح باکس - بنکن به‌منظور بررسی، بهینه‌سازی و مدل‌سازی متغیرهای مستقل فرایند استخراج توسط حلال به کمک امواج فراصوت شامل شدت امواج فراصوت (٪75و50 ،25)، دمای استخراج ºC60 و 45 ،30) و مدت ‌زمان اعمال امواج فراصوت (min 60 و40 ،20) جهت دستیابی به حداکثر میزان فعالیت ضد رادیکالی از برگ گیاه زولنگ (Eryngium caucasicum Trautv) استفاده ‌شده است. میزان فعالیت ضد رادیکالی به دو روش دی‌فنیل پیکریل هیدرازیل (DPPH) و هیدروژن پراکسید (H2O2) اندازه‌گیری شد. نتایج به‌دست ‌آمده نشان داد که تأثیرات خطی، درجه دوم و متقابل هر سه متغیر مستقل بر قدرت جذب رادیکال‌های آزادDPPH و H2O2 معنی‌دار بود. برای هر پاسخ با استفاده از تجزیه‌ و تحلیل رگرسیون خطی چندگانه، مدل چندجمله‌ای درجه دوم به دست آمد. بر اساس بهینه‌سازی به روش عددی شرایط بهینه به‌صورت ٪50 شدت امواج فراصوت، دما ºC 42 و زمان اعمال امواج فراصوت معادل min51 به دست آمد. در این شرایط مقدار فعالیت ضد رادیکالی عصاره ٪20/50 مهار رادیکال‌های آزاد DPPH و ٪55/26 مهار رادیکال-های آزاد H2O2 پیش‌بینی گردید. مدل‌های ارائه‌ شده برای پیش‌ بینی مقادیر متغیرهای وابسته نتایج بسیار نزدیکی با داده‌های تجربی داشت. درنهایت نتایج به‌دست‌ آمده با نتایج حاصل از استخراج به روش سنتی (سوکسله) مقایسه گردید. نتایج حاکی از آن است که با استفاده از امواج فراصوت امکان دستیابی به ترکیبات ضد رادیکال بیشتر در مدت‌ زمان کوتاه‌تری وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modelling and optimization of radical scavenging activity of Eryngium caucasicum Trautv leaf extracts obtained by ultrasound assisted extraction

نویسندگان [English]

  • Aref Norouzi 1
  • Mandana Bimakr 2
  • Ali Ganjloo 2
  • Soheila Zarringhalami 2
1 M.Sc in Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Response surface methodology is a collection of mathematical and statistical techniques for empirical model building. In this study, response surface methodology based on Box Behnken design was applied for investigation, optimization and modelling of ultrasound assisted extraction independent variables including amplitude (25, 50 and 75%), temperature (30, 45 and 60 ºC) and sonication time (20, 40 and 60 min) to maximize the radical scavenging activity of Eryngium caucasicum Trautv leaf extracts. The radical scavenging activity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) radical scavenging activity methods. Based on results obtained linear, quadratic and interaction effects of three independent variables had significant effect on DPPH and H2O2 free radical scavenging activity. Quadratic polynomial model was obtained for each response using multiple linear regression analysis. By using numerical optimization the optimized condition was obtained as 50% amplitude, 42 ºC temperature and 51 min sonication time. The radical scavenging activity of extracts under these optimal conditions was predicted as 50.20% DPPH free radical scavenging activity and 26.55% H2O2 free radical scavenging activity. The models obtained for prediction of dependent variables has a good closeness with experimental results. Finally, the results obtained were compared with conventional Soxhlet extraction results. Based on the results, by applying ultrasound waves it is possible to obtain more compounds with radical scavenging activity during short time.

کلیدواژه‌ها [English]

  • Eryngium caucasicum Trautv
  • Ultrasound waves
  • Response surface methodology
  • Radical scavenging activity
  • Soxhlet
[1] قره خانی، م.؛ صادقی ماهونک، ع.؛ قربانی، م. (1387) آنتی‌اکسیدان‌های طبیعی: ترکیبات عملگر جدید، مجموعه مقالات دومین کنفرانس ملی غذای فراسودمند (عملگر)، تهران، دانشگاه تربیت مدرس، ص452-443.
[2] Oktay, M., Gulcin, I. Kufrevioglu, O. I. (2003). Determination of invitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Food Sci. Technol-LEB., 36, 263-271.
[3] Kulisic, T., Radonic, A. Katalinic, V. (2004). Use of different methods for testing antioxidative of oregano essntial oil. Food Chem., 85, 633-640.
[4] Christopher, M. D., David J. M. (2003). Exercise-Associated Oxidative Stress. Clin Tech Equine Pract., 2, 278-291.
[5] Pimenov, M. G., Leonov, M. V. (1993). The Genera of the Umbelliferae. Kew: Royal Botanic Gardens, Landon, pp 92-93.
[6] Worz, A. (2004). On the distribution and relationships of the South-West Asian species of Eryngium L. (Apiaceae-Saniculoideae). Turk. J. Bot., 28, 85-92.
[7]   بویه، ب.؛ کاشفی، ب.؛ رامئه، و.؛ علیپور، ز. (1391) بررسی پتانسیل‌های کشت پایدار در گیاه دارویی زولنگ Eryngium caucasicum Trautv.، اولین کنفرانس ملی راهکارهای دستیابی به توسعه پایدار در بخش‌های کشاورزی، منابع طبیعی و محیط‌زیست، تهران، وزارت کشور. ص 20-15.
[8] Khoshbakhat, K., Hammer, K., Pistrick, K. (2007). Eryngium caucasicum Trautv. cultivated as a vegetable in the Elburz mountains (Northern Iran). Genetic Resour Crop Ev., 54, 445-448.
[9] Nabavi, S. M., Ebrahimzadeh, M. A., Nabavi, S. F., Jafari, M. (2008). Free radical scavenging activity and antioxidant capacity of Eryngium caucasicum Trautv and Froripia subpinnata. Pharmacol., 3, 19-25.
[10] Annegowda, H. V., Mordi, M. N., Ramanathan, S., Hamdan, M. R. Mansor, S. M. (2012). Effect of extraction techniques on phenolic content, antioxidant and antimicrobial activity of Bauhinia purpurea: HPTLC Determination of Antioxidants. Food Anal Methods, 5, 226-233.
[11] Wang, L., Weller, C.L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol., 17, 300-312.
[12] Teh, S. Brich, J.B. (2014).  Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason Sonochem., 21, 346-353.
[13] Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. Anal Chem., 71, 100-109.
[14] Wen, L., Lin, L.,You, L., Yng, B., Jing, G. Zhao, M. (2011). Ultrasound-assisted extraction and structural identification of poly polysaccharides from Isodon lophanthoides var. gerardianus (Bentham) H. Hara. Carbohyd Polym., 85, 541-547.
[15] Li, J., Ding, S, Ding, X. (2007). Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. Jinsixiaozao. J Food Eng., 80, 176-183.
[16] Shyu, Y. S., Hwang, L. S. (2002). Antioxidant activity of the crude extract of lignin glycosides from unroasted Burma black sesame meal. Food Res Int., 35, 357-365.
[17] Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., Madani, K. (2013). Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind Crop Prod., 49, 668-674.
[18] Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. G., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem., 34,540-560.
[19] Liu, J., Li, J. W., Tang, J. (2010). Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process, 88, 215-221.
[20] Hammi, K. M., Jdey, A., Abdelly, A., Majdoub, H. Ksouri, R. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chem., 184, 80-89.
[21] Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S.M., Ali, G.  (2012) Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules, 17, 11748-11762.
[22] Kamran Khan, M., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem., 119, 851-858.
[23] Ramic, M., Vidovic, S., Zekovic, Z., Vladic, J., Cvejin, A., Pavlic, B. (2015). Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason Sonochem., 23, 360-368.
[24]Yang, B., Zhao, M., Shi, J., Yang, N., Jiang, Y. (2008). Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem., 106, 685-690.
[25] Tomšik, A., Pavlic, B., Vladic, J., Ramic, M., Brindza, J., Vidovic, S. (2016). Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason Sonochem., 29, 502-511.
[26] Boonkird, S., Phisalaphong, C., Phisalaphong, M. (2008). Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrason Sonochem., 15, 1075-1079.
[27] شلماشی، الف.؛ امانی، ف. (1394) کاربرد سطح پاسخ در بهینه‌سازی استخراج روغن از مغز گردو و هسته میوه انبه با استفاده از امواج فراصوت. فصلنامه فناوری‌های نوین غذایی، سال سوم، شماره10 ، ص 10-1.
[28] Gajendragadkar, C. N., Gogate, P. R. (2016). Intensified recovery of valuable products from whey by use of ultrasound in processing steps. A review. Ultrason Sonochem., 32, 102-118.