ارزیابی ویژگی های حسی و مدلسازی سینتیک شاخص های رنگی فندق در حین برشته شدن توسط امواج مادون قرمز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم و صنایع غذایی، دانشگاه گیلان

2 دانشجوی دکتری، گروه فراوری مواد غذایی، پژوهشکده علوم و صنایع غذایی مشهد

چکیده

در این پژوهش، اثرات پرتوهای مادون قرمز در فرآیند برشته کردن فندق در سه توان 700، 1100 و 1550 وات در زمان های 3، 6، 9 و 15 دقیقه بررسی گردید. همچنین، از روش های چندمتغیره متقارن (تعیین ضرایب همبستگی و آنالیز شاخص های اصلی) و نامتقارن (فاکتوریل کاملا تصادفی و رگرسیون حداقل مربعات جزئی) به منظور بررسی شاخص های رنگی (L، a و b) و ویژگی های حسی (رنگ، بو، طعم، بافت و پذیرش کلی) استفاده گردید. افزایش توان و زمان فرآیند برشته کردن موجب کاهش شاخص L و افزایش شاخص a گردید. با افزایش زمان فرآیند برشته کردن تا زمان 6 دقیقه، شاخص b افزایش و پس از آن به طور معنی داری کاهش یافت. بالاترین امتیاز ویژگی های حسی در شرایط زمان به مدت 6 دقیقه با توان 1550 وات و 12 دقیقه با توان 1100 وات بدست آمد. برای شبیه سازی رفتار شاخص های رنگ فندق در طول زمان فرآیند برشته شدن، مدل های مختلفی با هم مقایسه و با توجه به پارامترهای آماری ضریب همبستگی، مربع چی، خطای یک طرفه میانگین و خطای مجذور میانگین ریشه، مدل های مناسب تعیین گردیدند. از تجزیه و تحلیل نمودار آنالیز شاخص های اصلی می توان دریافت که نمونه های دارای بالاترین امتیاز ویژگی های حسی، در سطح متوسطی از شاخص های رنگ بودند. ضرایب همبستگی بین ویژگی حسی رنگ و تمامی شاخص های رنگ سنجی معنی دار و از بین سه شاخص رنگ سنجی، شاخص b دارای بیشترین ارتباط معنی دار با ویژگی های حسی بود. R2 مدل های رگرسیونی حداقل مربعات جزئی بدست آمده در محدوده متوسط به بالا بود که نشان دهنده کارایی بالای این معادلات در پیشگویی ویژگی های حسی نمونه های فندق برشته شده به روش مادون قرمز با استفاده از پارامترهای رنگ سنجی می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of sensory characteristics and modeling of the kinetics of hazelnut color indices during infrared roasting

نویسندگان [English]

  • Amir Pourfarzad 1
  • Siamak Gheibi 1
  • Zahra Ahmadian 2
1 Assistant Professor, Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Ph.D. Student, Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran
چکیده [English]

In this study, the effects of infrared beams in the process of hazelnut roasting in three powers of 700, 1100 and 1550 watts at times of 3, 6, 9 and 15 minutes were investigated. Also, the asymmetric methods (completely randomized factorial and partial least squares regression) and symmetric methods (coefficients of determination and principal components analysis) were used for study of color parameters (L, a and b) and sensory aspects (color, odor, taste, texture and overall acceptability). Increase of power and roasting time lead to decrease of L and increase of a. On the other hand, this experiment showed that b component increased with increasing of roasting time until 6 min and then decreased. The highest scores of sensory characteristics were obtained under 6 min infrared roasting at power of 1550 watts and 12 min at power of 1100 watts. Different models were compared in order to simulation of the behavior of hazelnut color components during roasting process and the Suitable models were selected according to the statistical tests of correlation coefficient, χ2, mean bias error and root mean square error. It could be found from principal components analysis (PCA) that the samples with the highest scores of sensory characteristics were in medium ranges of color indices. Correlation coefficients between sensory color and all of color indices were significant. Among three color indices, b index had the most significant relationships with sensory characteristics. Obtained R2 of partial least squares regression models were above the medium range. It shows the high efficiency of these models in prediction of sensory characteristics of infrared roasted hazelnuts from color analysis indices.

کلیدواژه‌ها [English]

  • Hazelnut
  • Kinetics
  • Roasting
  • Power of infrared
  [1]Maguire, L., O'sullivan, S., Galvin, K., O'connor, T. and O'brien, N. (2004). Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. International journal of food sciences and nutrition, 55(3): pp. 171-178.
  [2]FAO, Food and Agriculture Organization of the United Nations. 2012, Rome, Italy.
  [3]Demir, A.D. and Cronin, K. (2005). Modelling the kinetics of textural changes in hazelnuts during roasting. Simulation Modelling Practice and Theory, 13(2): pp. 97-107.
  [4]Özdemir, M. and Devres, O. (2000). Analysis of color development during roasting of hazelnuts using response surface methodology. Journal of Food Engineering, 45(1): pp. 17-24.
  [5]Özdemir, M. and Devres, O. (2000). Kinetics of color changes of hazelnuts during roasting. Journal of Food Engineering, 44(1): pp. 31-38.
  [6]Özdemir, M., Seyhan, F.G., Özdeş Bodurb, A. and Onur Devres, Y. (2000). Effect of initial moisture content on the thin layer drying characteristics of hazelnuts during roasting. Drying Technology, 18(7): pp. 1465-1479.
  [7]Perren, R. and Escher, F.E. (1997). Investigations on the hot air roasting of nuts. Manufacturing Confectioner, 77: pp. 123-127.
  [8]Zhu, Y. and Pan, Z. (2009). Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating. Journal of Food Engineering, 90(4): pp. 441-452.
  [9]Chandrasekara, N. and Shahidi, F. (2011). Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. Journal of Agricultural and Food Chemistry, 59(9): pp. 5006-5014.
  [10]Park, J.-H., Lee, J.-M., Cho, Y.-J., Kim, C.-T., Kim, C.-J., Nam, K.-C. and Lee, S.-C. (2009). Effect of far-infrared heater on the physicochemical characteristics of green tea during processing. Journal of Food Biochemistry, 33(2): pp. 149-162.
  [11]Sakai, N. and Hanzawa, T. (1994). Applications and advances in far-infrared heating in Japan. Trends in food science & technology, 5(11): pp. 357-362.
  [12]Yang, J., Bingol, G., Pan, Z., Brandl, M.T., McHugh, T.H. and Wang, H. (2010). Infrared heating for dry-roasting and pasteurization of almonds. Journal of Food Engineering, 101(3): pp. 273-280.
  [13]Hebbar, H.U., Vishwanathan, K. and Ramesh, M. (2004). Development of combined infrared and hot air dryer for vegetables. Journal of Food Engineering, 65(4): pp. 557-563.
  [14]Driscoll, R. and Madamba, P. (1994). Modelling the browning kinetics of garlic. Food Australia, 46(2): pp. 66-71.
  [15]Moss, J. and Otten, L. (1989). A relationship between colour development and moisture content during roasting of peanuts. Canadian Institute of food science and technology journal, 22(1): pp. 34-39.
  [16]Demir, A.D., Celayeta, J.M.a.F.a., Cronin, K. and Abodayeh, K. (2002). Modelling of the kinetics of colour change in hazelnuts during air roasting. Journal of Food Engineering, 55(4): pp. 283-292.
  [17]Potchak, K.M. (1985). Infrared roasting of nuts, particularly hazelnuts. Confectionery Production, 51(6): pp. 313-313.
  [18]Uysal, N., Sumnu, G. and Sahin, S. (2009). Optimization of microwave–infrared roasting of hazelnut. Journal of Food Engineering, 90(2): pp. 255-261.
  [19]Alvarez, M.D. and Canet, W. (2002). A comparison of various rheological properties for modelling the kinetics of thermal softening of potato tissue (cv Monalisa) by water cooking and pressure steaming. International journal of food science & technology, 37(1): pp. 41-55.
  [20]Shin, S. and Bhowmik, S.R. (1995). Thermal kinetics of color changes in pea puree. Journal of Food Engineering, 24(1): pp. 77-86.
  [21]Rapusas, R. and Driscoll, R. (1995). Kinetics of non-enzymatic browning in onion slices during isothermal heating. Journal of Food Engineering, 24(3): pp. 417-429.
  [22]Cammarn, S., Lange, T. and Beckett, G. (1990). Continuous fluidized-bed roasting. Chemical Engineering Progress, 86(6): pp. 40-46.
  [23]Saklar, S., Ungan, S. and Katnas, S. (1999). Instrumental crispness and crunchiness of roasted hazelnuts and correlations with sensory assessment. Journal of food science, 64(6): pp. 1015-1019.
  [24]İbanoǧlu, E. (2002). Kinetic study on colour changes in wheat germ due to heat. Journal of Food Engineering, 51(3): pp. 209-213.
  [25]Kahyaoglu, T. and Kaya, S. (2006). Modeling of moisture, color and texture changes in sesame seeds during the conventional roasting. Journal of Food Engineering, 75(2): pp. 167-177.
  [26]Buckholz, L.L., Daun, H., Stier, E. and Trout, R. (1980). Influence of roasting time on sensory attributes of fresh roasted peanuts. Journal of food science, 45(3): pp. 547-554.
  [27]Giannuzzi, L., Pinotti, A. and Zaritzky, N. (1998). Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. International Journal of Food Microbiology, 39(1): pp. 101-110.
  [28]MacFie, H.J. and Hedderley, D. (1993). Current practice in relating sensory perception to instrumental measurements. Food quality and preference, 4(1): pp. 41-49.
  [29]Grosso, N. and Resurreccion, A. (2002). Predicting consumer acceptance ratings of cracker‐coated and roasted peanuts from descriptive analysis and hexanal measurements. Journal of food science, 67(4): pp. 1530-1537.
  [30]Lindinger, C., Labbe, D., Pollien, P., Rytz, A., Juillerat, M.A., Yeretzian, C. and Blank, I. (2008). When machine tastes coffee: Instrumental approach to predict the sensory profile of espresso coffee. Analytical Chemistry, 80(5): pp. 1574-1581.