[1] Rizwan, M., Rodriguez-Blanco, I., Harbottle, A., Birch-Machin, M.A., Watson, R.E.B., & Rhodes, L.E. (2011). Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Br. J. Dermatol., 164, 154-162.
[2] Burton-Freeman, B., Talbot, J., Park, E., Krishnankutty, S., & Edirisinghe, I. (2012). Protective activity of processed tomato products on postprandialoxidation and inflammation:a clinical trial in healthy weight men and women. Mol. Nutr. Food Res., 56, 622-631.
[3] Valencia, C., Sanchez, M.C., Ciruelos, A., Lattore, A., Madiedo, J.M., & Gallegos, C. (2003). Non-linear viscoelasticity modeling of tomato paste products. Food Res. Int., 36, 911-919.
[4] Iranian National Standardization Organization 761 (INSO 761). (2016). Canned Tomato Paste- Specifications and Test Methods., 7th Revision.
[5] Liu, C., Hao, G., Su, M., Chen, Y., & Zheng, L. (2017). Potential of multispectral imaging combined with chemometric methods for rapid detection of sucroseadulteration in tomato paste. J. Food Eng., 215, 78-83.
[6] Ren, L., Meng, m., Wang, p., Xu, Z., Eremin, S.A., Zhao, J., Yin, Y., & Xi, R. (2014). Determination of sodium benzoate in food products by fluorescence polarization immunoassay.
Talanta.,
121, 136-143.
[7] Hong, X., Wang, J., & Qi, G. (2014). Comparison of spectral clustering, K-clustering and hierarchical clustering on e-nose datasets: application to the recognition of material freshness, adulteration levels and pretreatment approaches for tomato juices. Chemom. Intell. Lab. Syst., 133, 17-24.
[8] Institute of Standards and Industrial Research of Iran 3562 (ISIRI 3562). (2010). Foodgrade sodium benzoate-Specifications and test methods., 1 st Revision.
[9] Faraji, M., & Rahbarzare, F. (2016). Simultaneous determination of four preservatives in foodstuffs by high performance liquid chromatography. Nutr. Food Sci. Res., 3, 43-50.
[10] Vesal, h., Mortazavi, S.A.M., Mohammadi, A., & Esmaili, S. (2013). Measurement of Sodium Sorbate and Sodium Benzoate in Doogh Specimens Presented in Tehran by HPLC Method. Iran. J. Nutr. Sci. Food Technol., 8, 181-190. [In Persian]
[11] Abedi, A.S., Mohammadi, A., Azadniya, E., Mortazavian, A.M., & Khaksar, R. (2014).Simultaneous determination of sorbic and benzoic acids in milk products using an optimised microextraction technique followed by gas chromatography. Food Addit. Contam: Part A., 31, 21-8.
[12] Ha, D., Sun, Q., Su, K., Wan, H., Li, H., Xu, N., & Wang, P. )2015(. Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens. Actuators, B: Chemical., 207, 1136-1146.
[13] Ivarson, P., Holmin, S., Hojer, N.E., Krantz-Rulcker, C., & Winquist, F. )2001(. Discrimination of tea by means of a voltammetric electronic tongue and different applied waverforms. Sens. Actuators, B: Chemical,. 76, 449-454.
[14] Dias, L.A., Peres, A.M., Veloso, A.C.A., Reis, F.S., Vilas-Boasa, M., & Machado, A.A.S.C. (2009). An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sens. Actuators, B: Chemical., 136, 209-217.
[15] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Rodriguez-Mendez, M.L., Lozano, J., Razavi, S.H., & Ahmadi, H. (2011). Potential application of electronic nose technology in brewery. Trends Food Sci. Technol., 22, 165-174.
[16] Medina-Plaza, C., García-Hernandez, C., de Saja, J.A., Fernandez-Escudero, J.A., Barajas, E., Medrano, G., GarcíaCabezon, C., Martin-Pedrosa, F., & Rodriguez-Mendez, M.L. (2015). The advantages of disposable screen-printed biosensors in a bioelectronic tongue for the analysis of grapes. LWT - Food Sci. Technol., 62, 940-947.
[17] Rudnitskaya, A., Nieuwoudt, H., H. Muller, N., Legin, A., du Toit, M., & Bauer, F.F. (2010). Instrumental measurement of bitter taste in red wine using an electronic tongue. Anal. Bioanal. Chem., 397, 3051-3060.
[18] Hummers, W.S., & Offeman, R.E. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc., 80, 1339.
[19] Dalvand, M.J., Mohtasbi, S.S., & Rafiei, Sh. (2017). Development of an electronic tongue system based on Glycarcarbon electrode in order to quantify ascorbic acid. Iranian Biosyst. Eng.,48, 93-99. [In Persian]
[20] Winquist, F., Wide, P., & Lundström, I. (1997). An electronic tongue based on voltammetry. Anal. Chim. Acta., 351, 21-31.
[21] Holmin, S., Krantz-Rülcker, C., & Winquist, F. (2004). Multivariate optimisation of electrochemically pre-treated electrodes used in a voltammetric electronic tongue. Anal. Chim. Acta., 510, 39-46.