Films and coatings containing probiotic microorganisms: A new approach for production of probiotic products

Document Type : Review Article

Authors

1 Food science and technology, Gorgan University of Agricultural Sciences & Natural Resources

2 Gorgan University of Agricultural Sciences and Natural Resources

Abstract

Probiotics are live microorganisms that adequate consumption of them leads to health effects in the host. Due to the increase in people's awareness and change in their lifestyle in recent years, the tendency to consume probiotic products has increased around the world. Production of probiotic food products have challenge because of inactivation of significant number of probiotic microorganisms during various food processes, storage or interaction with food ingredients. In addition, the digestion and passage of food through the gastrointestinal tract can affect the survival of probiotics. Therefore, maintaining the live population of probiotic microorganisms sufficiently(>106 CFU /ml or g ) until consumption of product should be considered by manufacturers. Incorporation of probiotic microorganisms in the different films and coatings are a new approach that has been proposed in the last decade to develop bioactive films with antimicrobial and health-promoting properties in order to provide new non-dairy probiotic products. The aim of this review study was evaluation of studies of probiotic films and coatings until now to conduct further research based on the available results in future.

Graphical Abstract

Films and coatings containing probiotic microorganisms: A new approach for production of probiotic products

Highlights

  • The embedding of probiotic microorganisms in films and coatings is a new approach for development of probiotic products.
  • Temperature during films storage affects the survival of probiotics.
  • The incorporation of probiotics in films and coatings changes their antimicrobial activity.
  • The resistance of probiotics in films and coatings against gastrointestinal conditions increases.

Keywords

Main Subjects


[1]Kanmani, P., & Lim, S. T. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem., 141(2), 1041-1049.
[2] Espitia, P. J., Batista, R. A., Azeredo, H. M., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Res Int., 90, 42-52.
[3] Rößle, C., Auty, M. A., Brunton, N., Gormley, R. T., & Butler, F. (2010). Evaluation of fresh-cut apple slices enriched with probiotic bacteria. Innov Food Sci & Emerg Technol., 11(1), 203-209.
 [4] Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E., & Mercenier, A. (2010). Application of probiotics in food products—challenges and new approaches. Curr Opin Biotechnol., 21(2), 175-181.
[5] Cook, M. T., Tzortzis, G., Charalampopoulos, D., & Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J Control Release., 162(1), 56-67.
[6] Burgain, J. J., Gaiani, C. C., Linder, M. R., & Scher, J. J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Eng., 104(4),467–483.
[7] FAO/WHO, (2002). Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada.
[8] Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. J functl foods., 9, 225-241.
[9] Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health.J Appl Microbiol., 100, 1171–1185.
[10] Vinderola, C. G., & Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int., 36(9-10), 895-904.
[11] Tamime, A. Y., Saarela, M. A. K. S., Sondergaard, A. K., Mistry, V. V., & Shah, N. P. (2005). Production and maintenance of viability of probiotic microorganisms in dairy products. Probiotic Dairy Prod., 1, 39-63.
[12] Talwalkar, A., Miller, C. W., Kailasapathy, K., & Nguyen, M. H. (2004). Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt. Int J Food Sci Technol., 39(6), 605-611.
[13] Ross, R. P., Desmond, C., Fitzgerald, G. F., & Stanton, C. (2005). Overcoming the technological hurdles in the development of probiotic foods. J Appl Microbiol., 98(6), 1410-1417.
[14] Shah, N. P. (2006). Manufacturing yogurt and fermented milks. In: Chandan, R.c., white, H. C., Kilara, A., and Hui, Y.H. Health benefits of yogurt and fermented milks (2nd ed., pp. 327-340). Blackwell Publishing.
[15] Sveje, M. (2007). Probiotic and prebiotics–improving consumer health through food consumption. Nutracoss., 28-31.
[16] Cruz, A. G., Faria, J. A. F., Saad, S. M. I., Bolini, H. M. A., Sant’Ana, A. S., & Cristianini, M. (2010). High pressure processing and pulsed electric fields: Potential use in probiotic dairy foods processing. Trends Food Sci Technol., 21, 483–493.
[17] Mattila-Sandholm, T., Myllärinen, P., Crittenden, R., Mogensen, G., Fondén, R., & Saarela, M. (2002). Technological challenges for future probiotic foods. Int Dairy J., 12(2-3), 173-182.
[18] Vinderola, C. G., Costa, G. A., Regenhardt, S., & Reinheimer, J. A. (2002). Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int Dairy J., 12(7), 579-589.
[19] Mortazavian, A. M., Khosrokhavar, R., Rastegar, H., & Mortazaei, G. R. (2010). Effects of dry matter standardization order on biochemical and microbiological characteristics of freshly made probiotic Doogh (Iranian fermented milk drink). Italian J Food Sci., 22(1), 98-102.
[20] Nobakhti, A. R., Ehsani, M. R., Mousavi, S. M., & Mortazavian, A. M. (2009). Influence of lactulose and Hi-maize addition on viability of probiotic microorganisms in freshly made synbiotic fermented milk drink. Milchwissenschaft., 64(2), 191-193.
[21] Lee, Y. K., & Salminen, S. (2009). Handbook of probiotics and prebiotics (2nd ed.). Hoboken, NJ: JohnWiley and Sons, Inc.
[22] Gaudreau, H., Champagne, C. P., Remondetto, G. E., Bazinet, L., & Subirade, M. (2013). Effect of catechins on the growth of oxygen-sensitive probiotic bacteria. Food res int., 53(2), 751-757.
[23] Zayed, G., & Roos, Y. H. (2004). Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze drying and storage. Process Biochem., 39, 1081–1086.
 [24] Weinbreck, F., Bodnár, I., & Marco, M. L. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products?. Int J food microbial., 136(3), 364-367.
[25] Korbekandi, H., Mortazavian, A. M., & Iravani, S. (2011). Technology and stability of probiotic in fermented milks. In: Shah, N.P., da Cruz, A.G., de Assis Fonseca Faria, J (Eds). Probiotic and prebiotic foods: Technology, stability and benefits to the human health. (1st., pp. 131-167). New York: Nova Science Publishers.
 [26] Bruno, F. A., & Shah, N. P. (2003). Viability of Two Freeze‐dried Strains of Bifidobacterium and of Commercial Preparations at Various Temperatures During Prolonged Storage. J food sci., 68(7), 2336-2339.
[27] Simpson, P. J., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2005). Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol., 99(3), 493-501.
[28] De Vuyst, L. (2000). Technology aspects related to the application of functional starter cultures. Food Technol Biotechnol., 38(2), 105-112.
[29] Sheehan, V. M., Ross, P., & Fitzgerald, G. F. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Inno Food Sci Emerg Technol., 8(2), 279-284.
[30] Kołozyn-Krajewskaa, D., & Dolatowski, Z. J. (2012). Probiotic meat products and human nutrition. Process Biochem., 47, 1761–1772.
[31] Park, H. K., So, J. S., & Heo, T. R. (1995). Acid adaptation promotes survival of Bifidobacterium breve against environmental stress. Food Biotechnol., 4, 226–230.
[32] Cruz, A. G., Faria, J. A. F., & Van Dender, A. G. F. (2007). Packaging system and probiotic dairy foods. Food Res Int., 40, 951–956.
[33] Burgain, J. J., Gaiani, C. C., Linder, M. R., & Scher, J. J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Enginer., 104(4), 467–483.
[34] Dianawati, D., Mishra, V., & Shah, N. P. (2015). Survival of microencapsulated probiotic bacteria after processing and during storage: A review. Crit Rev FoodSci Nutr., 56(10), 1685–1716.
[35] da Cruz, A. G., Faria, J. D. F., & Van Dender, A. G. F. (2007). Packaging system and probiotic dairy foods. Food Res Int., 40, 951–956.
[36] Mortazavian, A. M., Azizi, M. H., & Sohrabvandi, S. (2010). Edible Films: Qualitative Parameters and Production Methods. JFST., 7(4), 107-117. [In Persian]
[37] Ahvenainen, R. (2003). Novel food packaging techniques. (pp. 12-15). Cambridge, UK: Woodhead Publishing Limited.
[38] Lopez-Rubio, A., Gavara, R., & Lagaron, J. M. (2006). Bioactive packaging: Turning foods into healthier foods through biomaterials. Trends Food Sci Technol., 17, 567–575.
[39] Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food biopro tech., 4(6), 849-875.
[40] Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends Food Sci Technol., 19(12), 634-643.
[41] Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & Gonzalez-Martinez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Crit rev food sci nutria., 48(6), 496-511.
[42] Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydro., 68, 136-148.
[43] Embuscado, M. E., & Huber, K. C. (2009). Edible films and coatings for food applications (Vol. 222). (pp. 1-23). London: Springer.
[44] Rhim, J. W. (2007). Potential use of biopolymer-based nanocomposite films in food packaging applications. Food Sci Biotech., 16(5), 691-709.
[45] Baldwin, E. A., Nisperos‐Carriedo, M. O., & Baker, R. A. (1995). Use of edible coatings to preserve quality of lightly (and slightly) processed products. Crit Rev Food Sci Nutri., 35(6), 509-524.
[46] da Silva, B. V., Barreira, J. C., & Oliveira, M. B. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci Technol., 50, 144-158.
[47] Corona-Hernandez, R. I., Álvarez-Parrilla, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., de la Rosa, L. A., & Wall-Medrano, A. (2013). Structural stability and viability of microencapsulated probiotic bacteria: A review. Compre Rev Food Sci Food Safety., 12(6), 614–628.
[48] Romano, N., Tavera-Quiroz, M. J., Bertola, N., Mobili, P., Pinotti, A., & Gómez-Zavaglia, A. (2014). Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Res Int., 64, 560-566.
[49]Tang, Y., Xie, F., Zhang, D., Zhu, M., Liu, L., Liu, P., & Gu, C. (2015). Physical properties and prebiotic activity of maize starch-based functional films. Starch – Stärke., 67, 124–131.
[50] Piermaria, J., Diosma, G., Aquino, C., Garrote, G., & Abraham, A. (2015). Edible kefiran films as vehicle for probiotic microorganisms. Innov Food Sci Emerg Technol., 32, 193–199.
[51] Singh, P., Magalhães, S., Alves, L., Antunes, F., Miguel, M., Lindman, B., & Medronho, B. (2019). Cellulose-based edible films for probiotic entrapment. Food hydrocoll., 88, 68-74.
[52] Gagliarini, N., Diosma, G., Garrote, G. L., Abraham, A. G., & Piermaria, J. (2019). Whey protein-kefiran films as driver of probiotics to the gut. LWT., 105, 321-328.
[53] Shahrampour, D., Khomeiri, M., Razavi, S. M. A., & Kashiri, M. (2020). Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC 45. LWT-Food Sci Technol., 118, 108758.
[54] Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. D. (2014). Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food chem., 159, 302-308.
[55] Soukoulis, C., Singh, P., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2016). Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food hydrocoll., 52, 876-887.
[56] Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food hydrocoll., 70, 345-355.
[57] Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G., & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Res Int., 43(10), 2402-2408.
[58] Concha-Meyer, A., Schöbitz, R., Brito, C., & Fuentes, R. (2011). Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control., 22, 485–489.
[59] De Lacey, A. L., López-Caballero, M. E., & Montero, P. (2014). Agar films containing green tea extract and probiotic bacteria for extending fish shelf-life. LWT-Food Sci Technol., 55(2), 559-564.
[60] Sánchez-González, L., Saavedra, J. I. Q., & Chiralt, A. (2013). Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocoll., 33(1), 92-98.
[61] Sánchez-González, L., Saavedra, J. I. Q., & Chiralt, A. (2014). Antilisterial and physical properties of biopolymer films containing lactic acid bacteria. Food Cont., 35(1), 200-206.
[62] Settier-Ramírez, L., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2019). Antilisterial properties of PVOH-based films embedded with Lactococcus lactis subsp. Lactis. Food Hydrocoll., 87, 214-220.
[63] Ma, D., Jiang, Y., Ahmed, S., Qin, W., & Liu, Y. (2019). Physical and antimicrobial properties of edible films containing Lactococcus lactis. Int journal biol macro., 141, 378-386.
[64] Shahrampour, D. (2019). Production of bioactive edible film based on pectin / sodium alginate containing Lactobacillus plantarum and evaluation of its viability and antimicrobial properties. PhD thesis. Dept of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources. [In Persian]
[65] Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii by spray drying in goat's milk. Small Ruminant Res., 123(1), 155–159.
[66] Tapia, M. S., Rojas-Graü, M. A., Rodríguez, F. J., Ramírez, J., Carmona, A., & Martin-Belloso, O. (2007). Alginate and gellan-based edible films for probiotic coatings on fresh-cut fruits. J Food Sci., 72, 190–196.
[67] Soukoulis, C., Yonekura, L., Gan, H. H., Behboudi-Jobbehdar, S., Parmenter, C., & Fisk, I. (2014). Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll., 39, 231-242.
[68] Tavera-Quiroz, M. J., Romano, N., Mobili, P., Pinotti, A., Gómez-Zavaglia, A., & Bertola, N. (2015). Green apple baked snacks functionalized with edible coatings of methylcellulose containing Lactobacillus plantarum. J Funct Foods., 16, 164-173.
[69] Shahrampour, D., Khomeiri, M., Kashiri, M., & Razavi, S. M. A. (2020). Evaluation of probiotic bioactive edible coating application on qualitative properties of fresh strawberry. JIFT., In Press. [In Persian]
[70] Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT-Food Sci Technol., 87, 54-60.
[71] Altamirano-Fortoul, R., Moreno-Terrazas, R., Quezada-Gallo, A., & Rosell, C. M. (2012). Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocoll., 29(1), 166-174.
[72] De Lacey, A. L., López-Caballero, M. E., Gómez-Estaca, J., Gómez-Guillén, M. C., & Montero, P. (2012). Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innov Food Sci Emerg Technol., 16, 277-282.