[1]Kanmani, P., & Lim, S. T. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem., 141(2), 1041-1049.
[2] Espitia, P. J., Batista, R. A., Azeredo, H. M., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Res Int., 90, 42-52.
[3] Rößle, C., Auty, M. A., Brunton, N., Gormley, R. T., & Butler, F. (2010). Evaluation of fresh-cut apple slices enriched with probiotic bacteria. Innov Food Sci & Emerg Technol., 11(1), 203-209.
[4] Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E., & Mercenier, A. (2010). Application of probiotics in food products—challenges and new approaches. Curr Opin Biotechnol., 21(2), 175-181.
[5] Cook, M. T., Tzortzis, G., Charalampopoulos, D., & Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J Control Release., 162(1), 56-67.
[6] Burgain, J. J., Gaiani, C. C., Linder, M. R., & Scher, J. J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Eng., 104(4),467–483.
[7] FAO/WHO, (2002). Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada.
[8] Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. J functl foods., 9, 225-241.
[9] Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health.J Appl Microbiol., 100, 1171–1185.
[10] Vinderola, C. G., & Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int., 36(9-10), 895-904.
[11] Tamime, A. Y., Saarela, M. A. K. S., Sondergaard, A. K., Mistry, V. V., & Shah, N. P. (2005). Production and maintenance of viability of probiotic microorganisms in dairy products. Probiotic Dairy Prod., 1, 39-63.
[12] Talwalkar, A., Miller, C. W., Kailasapathy, K., & Nguyen, M. H. (2004). Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt. Int J Food Sci Technol., 39(6), 605-611.
[13] Ross, R. P., Desmond, C., Fitzgerald, G. F., & Stanton, C. (2005). Overcoming the technological hurdles in the development of probiotic foods. J Appl Microbiol., 98(6), 1410-1417.
[14] Shah, N. P. (2006). Manufacturing yogurt and fermented milks. In: Chandan, R.c., white, H. C., Kilara, A., and Hui, Y.H. Health benefits of yogurt and fermented milks (2nd ed., pp. 327-340). Blackwell Publishing.
[15] Sveje, M. (2007). Probiotic and prebiotics–improving consumer health through food consumption. Nutracoss., 28-31.
[16] Cruz, A. G., Faria, J. A. F., Saad, S. M. I., Bolini, H. M. A., Sant’Ana, A. S., & Cristianini, M. (2010). High pressure processing and pulsed electric fields: Potential use in probiotic dairy foods processing. Trends Food Sci Technol., 21, 483–493.
[17] Mattila-Sandholm, T., Myllärinen, P., Crittenden, R., Mogensen, G., Fondén, R., & Saarela, M. (2002). Technological challenges for future probiotic foods. Int Dairy J., 12(2-3), 173-182.
[18] Vinderola, C. G., Costa, G. A., Regenhardt, S., & Reinheimer, J. A. (2002). Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int Dairy J., 12(7), 579-589.
[19] Mortazavian, A. M., Khosrokhavar, R., Rastegar, H., & Mortazaei, G. R. (2010). Effects of dry matter standardization order on biochemical and microbiological characteristics of freshly made probiotic Doogh (Iranian fermented milk drink). Italian J Food Sci., 22(1), 98-102.
[20] Nobakhti, A. R., Ehsani, M. R., Mousavi, S. M., & Mortazavian, A. M. (2009). Influence of lactulose and Hi-maize addition on viability of probiotic microorganisms in freshly made synbiotic fermented milk drink. Milchwissenschaft., 64(2), 191-193.
[21] Lee, Y. K., & Salminen, S. (2009). Handbook of probiotics and prebiotics (2nd ed.). Hoboken, NJ: JohnWiley and Sons, Inc.
[22] Gaudreau, H., Champagne, C. P., Remondetto, G. E., Bazinet, L., & Subirade, M. (2013). Effect of catechins on the growth of oxygen-sensitive probiotic bacteria. Food res int., 53(2), 751-757.
[23] Zayed, G., & Roos, Y. H. (2004). Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze drying and storage. Process Biochem., 39, 1081–1086.
[24] Weinbreck, F., Bodnár, I., & Marco, M. L. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products?. Int J food microbial., 136(3), 364-367.
[25] Korbekandi, H., Mortazavian, A. M., & Iravani, S. (2011). Technology and stability of probiotic in fermented milks. In: Shah, N.P., da Cruz, A.G., de Assis Fonseca Faria, J (Eds). Probiotic and prebiotic foods: Technology, stability and benefits to the human health. (1st., pp. 131-167). New York: Nova Science Publishers.
[26] Bruno, F. A., & Shah, N. P. (2003). Viability of Two Freeze‐dried Strains of Bifidobacterium and of Commercial Preparations at Various Temperatures During Prolonged Storage. J food sci., 68(7), 2336-2339.
[27] Simpson, P. J., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2005). Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol., 99(3), 493-501.
[28] De Vuyst, L. (2000). Technology aspects related to the application of functional starter cultures. Food Technol Biotechnol., 38(2), 105-112.
[29] Sheehan, V. M., Ross, P., & Fitzgerald, G. F. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Inno Food Sci Emerg Technol., 8(2), 279-284.
[30] Kołozyn-Krajewskaa, D., & Dolatowski, Z. J. (2012). Probiotic meat products and human nutrition. Process Biochem., 47, 1761–1772.
[31] Park, H. K., So, J. S., & Heo, T. R. (1995). Acid adaptation promotes survival of Bifidobacterium breve against environmental stress. Food Biotechnol., 4, 226–230.
[32] Cruz, A. G., Faria, J. A. F., & Van Dender, A. G. F. (2007). Packaging system and probiotic dairy foods. Food Res Int., 40, 951–956.
[33] Burgain, J. J., Gaiani, C. C., Linder, M. R., & Scher, J. J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Enginer., 104(4), 467–483.
[34] Dianawati, D., Mishra, V., & Shah, N. P. (2015). Survival of microencapsulated probiotic bacteria after processing and during storage: A review. Crit Rev FoodSci Nutr., 56(10), 1685–1716.
[35] da Cruz, A. G., Faria, J. D. F., & Van Dender, A. G. F. (2007). Packaging system and probiotic dairy foods. Food Res Int., 40, 951–956.
[36] Mortazavian, A. M., Azizi, M. H., & Sohrabvandi, S. (2010). Edible Films: Qualitative Parameters and Production Methods. JFST., 7(4), 107-117. [In Persian]
[37] Ahvenainen, R. (2003). Novel food packaging techniques. (pp. 12-15). Cambridge, UK: Woodhead Publishing Limited.
[38] Lopez-Rubio, A., Gavara, R., & Lagaron, J. M. (2006). Bioactive packaging: Turning foods into healthier foods through biomaterials. Trends Food Sci Technol., 17, 567–575.
[39] Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food biopro tech., 4(6), 849-875.
[40] Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends Food Sci Technol., 19(12), 634-643.
[41] Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & Gonzalez-Martinez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Crit rev food sci nutria., 48(6), 496-511.
[42] Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydro., 68, 136-148.
[43] Embuscado, M. E., & Huber, K. C. (2009). Edible films and coatings for food applications (Vol. 222). (pp. 1-23). London: Springer.
[44] Rhim, J. W. (2007). Potential use of biopolymer-based nanocomposite films in food packaging applications. Food Sci Biotech., 16(5), 691-709.
[45] Baldwin, E. A., Nisperos‐Carriedo, M. O., & Baker, R. A. (1995). Use of edible coatings to preserve quality of lightly (and slightly) processed products. Crit Rev Food Sci Nutri., 35(6), 509-524.
[46] da Silva, B. V., Barreira, J. C., & Oliveira, M. B. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci Technol., 50, 144-158.
[47] Corona-Hernandez, R. I., Álvarez-Parrilla, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., de la Rosa, L. A., & Wall-Medrano, A. (2013). Structural stability and viability of microencapsulated probiotic bacteria: A review. Compre Rev Food Sci Food Safety., 12(6), 614–628.
[48] Romano, N., Tavera-Quiroz, M. J., Bertola, N., Mobili, P., Pinotti, A., & Gómez-Zavaglia, A. (2014). Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Res Int., 64, 560-566.
[49]Tang, Y., Xie, F., Zhang, D., Zhu, M., Liu, L., Liu, P., & Gu, C. (2015). Physical properties and prebiotic activity of maize starch-based functional films. Starch – Stärke., 67, 124–131.
[50] Piermaria, J., Diosma, G., Aquino, C., Garrote, G., & Abraham, A. (2015). Edible kefiran films as vehicle for probiotic microorganisms. Innov Food Sci Emerg Technol., 32, 193–199.
[51] Singh, P., Magalhães, S., Alves, L., Antunes, F., Miguel, M., Lindman, B., & Medronho, B. (2019). Cellulose-based edible films for probiotic entrapment. Food hydrocoll., 88, 68-74.
[52] Gagliarini, N., Diosma, G., Garrote, G. L., Abraham, A. G., & Piermaria, J. (2019). Whey protein-kefiran films as driver of probiotics to the gut. LWT., 105, 321-328.
[53] Shahrampour, D., Khomeiri, M., Razavi, S. M. A., & Kashiri, M. (2020). Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC 45. LWT-Food Sci Technol., 118, 108758.
[54] Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. D. (2014). Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food chem., 159, 302-308.
[55] Soukoulis, C., Singh, P., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2016). Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food hydrocoll., 52, 876-887.
[56] Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food hydrocoll., 70, 345-355.
[57] Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G., & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Res Int., 43(10), 2402-2408.
[58] Concha-Meyer, A., Schöbitz, R., Brito, C., & Fuentes, R. (2011). Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control., 22, 485–489.
[59] De Lacey, A. L., López-Caballero, M. E., & Montero, P. (2014). Agar films containing green tea extract and probiotic bacteria for extending fish shelf-life. LWT-Food Sci Technol., 55(2), 559-564.
[60] Sánchez-González, L., Saavedra, J. I. Q., & Chiralt, A. (2013). Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocoll., 33(1), 92-98.
[61] Sánchez-González, L., Saavedra, J. I. Q., & Chiralt, A. (2014). Antilisterial and physical properties of biopolymer films containing lactic acid bacteria. Food Cont., 35(1), 200-206.
[62] Settier-Ramírez, L., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2019). Antilisterial properties of PVOH-based films embedded with Lactococcus lactis subsp. Lactis. Food Hydrocoll., 87, 214-220.
[63] Ma, D., Jiang, Y., Ahmed, S., Qin, W., & Liu, Y. (2019). Physical and antimicrobial properties of edible films containing Lactococcus lactis. Int journal biol macro., 141, 378-386.
[64] Shahrampour, D. (2019). Production of bioactive edible film based on pectin / sodium alginate containing Lactobacillus plantarum and evaluation of its viability and antimicrobial properties. PhD thesis. Dept of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources. [In Persian]
[65] Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii by spray drying in goat's milk. Small Ruminant Res., 123(1), 155–159.
[66] Tapia, M. S., Rojas-Graü, M. A., Rodríguez, F. J., Ramírez, J., Carmona, A., & Martin-Belloso, O. (2007). Alginate and gellan-based edible films for probiotic coatings on fresh-cut fruits. J Food Sci., 72, 190–196.
[67] Soukoulis, C., Yonekura, L., Gan, H. H., Behboudi-Jobbehdar, S., Parmenter, C., & Fisk, I. (2014). Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocoll., 39, 231-242.
[68] Tavera-Quiroz, M. J., Romano, N., Mobili, P., Pinotti, A., Gómez-Zavaglia, A., & Bertola, N. (2015). Green apple baked snacks functionalized with edible coatings of methylcellulose containing Lactobacillus plantarum. J Funct Foods., 16, 164-173.
[69] Shahrampour, D., Khomeiri, M., Kashiri, M., & Razavi, S. M. A. (2020). Evaluation of probiotic bioactive edible coating application on qualitative properties of fresh strawberry. JIFT., In Press. [In Persian]
[70] Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT-Food Sci Technol., 87, 54-60.
[71] Altamirano-Fortoul, R., Moreno-Terrazas, R., Quezada-Gallo, A., & Rosell, C. M. (2012). Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocoll., 29(1), 166-174.
[72] De Lacey, A. L., López-Caballero, M. E., Gómez-Estaca, J., Gómez-Guillén, M. C., & Montero, P. (2012). Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innov Food Sci Emerg Technol., 16, 277-282.