[1] Bennedsen, B.S., Peterson, D.L. (2005). Performance of a System for Apple Surface Defect Identification in Near-infrared Images. Biosyst. Eng., 90, 419–431.
[2] Aleixos, N., Blasco, J., Navarrón, F., Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Comput. Electron. Agric., 2, 121–137.
[3] Tao, Y. (1996). Spherical transform of fruit images for on-line defect extraction of mass objects. Opt. Eng., 35, 344–350.
[4] Li, J.B., Rao, X.Q., Wang, F.J., Wu, W., Ying, Y.B. (2013). Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods. Postharvest Biol. Tec., 82, 59–69.
[5] Kleynen, O., Leemans, V., Destain, M.F. (2005). Development of a multi-spectral vision system for the detection of defects on apples. INT. J. Food Eng., 69, 41–49.
[6] Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., Blasco, J. (2008). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. INT. J. Food Eng., 85, 191–200.
[7] Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., Blasco, J. (2011). Advances in machine vision applications for automatic in-spection and quality evaluation of fruits and vegetables. Food Bioprocess Tech., 4, 487–504.
[8] Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Tech., 5, 1121–1142.
[9] Leemans, V., Destain, M.F. (2004). A real-time grading method of apples based on features extracted from defects. INT. J. Food Eng., 61, 83–89.
[10] Blasco, J., Aleixos, N., Gómez, J., Moltó, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. INT. J. Food Eng., 83, 384–393.
[11] Kim, D.G., Burks, T.F., Qin, J.W., Bulanonm, D.M. (2009). Classification of grapefruit peel diseases using colour texture feature analysis. Agric. Biol. Eng., 2, 41–50.
]12[ ندافزاده، م.؛ آبدانان مهدیزاده، س. (1395) تعیین زمان پخت سبزیجات با کمک پردازش تصاویر دیجیتال و اندازهگیری مختصات رنگی. فناوری نوین غذایی، جلد 3، شماره 11، ص 49-57.
]13[ اورک، ه.؛ آبدانان مهدیزاده، س. (1396) توسعۀ یک سامانۀ دقیق کنترل علفهای هرز برای زمینهای چمن به کمک بینایی ماشین. تحقیقات سامانهها و مکانیزاسیون کشاورزی، جلد 19، شمار 70، ص 55-68.
[14] Ying, Y.B. (2000). Study on background segment and edge detection of fruit image using machine vision. J. Zhejiang. Univ-Sc A., 26, 35–38.
[15] Niphadkar, N.P., Burks, T.F., Qin, J., Ritenour, M. (2013). Edge effect compensation for citrus canker lesion detection due to light source variation—a hyperspectral imaging application. Agric. Eng. Int. CIGR J., 15, 314–327.
[16] Solomon, C., Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons.
[17] Throop, J.A., Aneshansley, D.J., Upchurch, B.L., Anger, B. (2001). Apple orientation on two conveyors: performance and predictability based on fruit shape characteristics. Trans. ASAE., 44, 99–109.
[18] López-García, F., Andreu-García, G., Blasco, J., Aleixos, N., Valiente, J.M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Comput. Electron. Agric., 71, 189-197.
[19] Zhang, B., Huang, W., Gong, L., Li, J., Zhao, C., Liu, C., Huang, D. (2015). Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. INT. J. Food Eng., 146, 143-151.