[1] Banayan-Aval, M., Koocheki, A. (2009). Agriculture Beans (9nd ed.). Jahad Daneshgahi of Mashhad, Iran. [In Persian]
[2] Brigide, P., Canniatt-Brazaca, S. G., Silva, M. O. (2014). Nutritional characteristics of biofortified common beans. Food Science and Technology, 34(3), 493–500.
[3] Rainey, K. M., Griffiths, P. D. (2019). Inheritance of Heat Tolerance during Reproductive Development in Snap Bean (Phaseolus vulgaris L.). Journal of the American Society for Horticultural Science, 130(5), 700–706.
[4] Kelly, J. F., Scott, M. K., Henry, G., Janssen, W. (1992). The nutritional value of snap beans versus other vegetables, in G. Henry and W. Janssen (Tech. Eds.), CIAT Proceedings of an International Conference on Snap Beans in the Developing World held from., 16, 23–46.
[5] Anderson, A. K., Finkelstein, R. (1919). A study of the electropure process of treating milk, Journal of Dairy Science, 2(5), 374–406.
[6] Knirsch, M. C., Alves dos Santos, C., Martins de Oliveira Soares Vicente, A. A., Vessoni Penna, T. C. (2010). Ohmic heating - a review. Trends in food science & technology, 21( 9), 436–441.
[7] Sastry, S., Abdelrahim, K., Ramaswamy, H. S., Marcotte, M. (2014). Factors influencing electrical conductivity. Ohmic heating in food processing, (53).
[8] Kessler, H. G. (1996). Lebensmittel-und Bioverfahrenstechnik, Molkereitechnologie mit 109 Tabellen. 4. Aufl. München, Kessler.
[9] Varghese, K. S., Pandey, M. C., Radhakrishna, K., Bawa, A. S. (2014). Technology, applications and modelling of ohmic heating: a review. Journal of food science and technology, 51(10), 2304–2317.
[10] Sastry, S. K., Barach, J. T. (2000). Ohmic and inductive heating. Journal of food science, 65, 42–46.
[11] Sarang, S., Sastry, S. K., Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87( 3), 351–356.
[12] Azadbakht, M., Vahedi-Torshizi, M., Rayeni-Moghbeli, H. (2019). Investigation of the effect of ohmic heat treatment on some mechanical properties of closed pistachio. Innovative Food Technologies, [In Persian]
[13] Ghajarjazi, E., Azadbakht, M., Ghaderi-Far, F. (2016). Relationship between thermal properties of canola pods (without seed) with moisture content, porosity and chemical composition of pods. Agricultural Engineering International: CIGR Journal, 18(1), 384–398.
[14] Standard, A. (2006). S358. 2 FEB03. Moisture Measurement-Forages. ASABE standards, 608.
[15] Salarikia, A. (2014). The effect of moisture content and temperature on specific heat capacity of nut and kernel of two Iranian pistachio varieties. Journal of Agricultural Machinery, 4(1), 30-36. [In Persian]
[16] Bitra, V. S. P., Banu, S., Ramakrishna, P., Narender, G., Womac, A. R. (2010). Moisture dependent thermal properties of peanut pods, kernels, and shells. Biosystems engineering, 106(4), 503–512.
[17] Azadbakht, M., Khoshtaghaza, M. H., Ghobadian, B., Minaei, S. (2013). Thermal properties of soybean pod as a function of moisture content and temperature. American journal of food science and technology, 1(2), 9–13.
[18] Fontana, A. J., Wacker, B., Campbell, C. S., Campbell, G. S. (1998). Simultaneous thermal conductivity, thermal resistivity, and thermal diffusivity measurement of selected foods and soil. 2001 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers.
[19] Aviara, N. A., Haque, M. A. (2001). Moisture dependence of thermal properties of sheanut kernel. Journal of food Engineering, 47 (2), 109–113.
[20] Singh, K. K., Goswami, T. K. (2000). Thermal properties of cumin seed. Journal of Food Engineering, 45(4), 181–187.
[21] Yang, W., Sokhansanj, S., Tang, J., Winter, P. (2002). Determination of thermal conductivity, specific heat and thermal diffusivity of borage seeds. Biosystems engineering, 82, 169–176.
[22] Bart-Plange, A., Addo, A., Kumi, F., Piegu, A. K. (2012). Some moisture dependent thermal properties of Cashew kernel ('Anarcardium occidentale’L.). Australian journal of agricultural engineering, 3(2), 65.
[23] Kianmehr, M. H., Hasan-Beigi, S. R., Hashemifard-Dehkordi, S. H. (2013) A Determination of Specific Heat and Thermal Conductivity of Pomegranate Components (Alak Variety). Iranian Journal of Biosystems Engineering., 42(2), 175-181. [In Persian]
[24] Sreenarayanan, V. V., Chattopadhyay, P. K. (1986). Specific heat of rice bran. Agricultural wastes, 16(3), 217–224.
[25] Shrivastava, M., Datta, A. K., (1999). Determination of specific heat and thermal conductivity of mushrooms (Pleurotus florida). Journal of food Engineering, 39(30), 255–260.
[26] Aghbashlo, M., Kianmehr, M. H., Hassan-Beygi, S. R., (2008). Specific heat and thermal conductivity of berberis fruit (Berberis vulgaris). Agricultural and Biological Sciences., 3(1), 330–336.
[27] Khodaei, J., Samimi, H. (2013) Investigation of Specific Heat and Thermal Conductivity of Rasa Grape (Vitis Vinifera L.) as a Function of Moisture Content. Journal of Agricultural Machinery, 3(2), 123-132. [In Persian]
[28] Darvishi, H., Rezaei Asl, A., Azadbakht, M. (2012). Determine of moisture diffusivity as function of moisture content and microwave power of some biomaterials. International Journal of Agricultural and Food Science, 2(2), 90–95.
[29] Razavi, S. M. A., Taghizadeh, M. (2007). The specific heat of pistachio nuts as affected by moisture content, temperature, and variety. Journal of Food Engineering, 79(1), 158–167.
[30] Van der Held, E. F. M., Van Drunen, F. G. (1949). A method of measuring the thermal conductivity of liquids. Physica, 15(10), 865–881.
[31] Cassano, A., Drioli, E. (2007). Concentration of clarified kiwifruit juice by osmotic distillation. Journal of Food Engineering, 79(4), 1397–1404.
[32] Aviara, N. A., Haque, M. A., Ogunjimi, L. A. O. (2008). Thermal properties of guna seed. International Agrophysics, 22(4), 291–297.