[1] Dehghanian, S., Mortazavi, A., Nasiri, M., & Ghorbany, M. (2001). Allocation of efficient factors in production of grapes with emphasis on sustainable agriculture in the Khorasan province. J. Agri. Sci. Technol., 15, 143-153.
[2] Aminian, M., & Abedinia, A. R. (2011). Study of possibility of replacement of sugar with grape syrup in the traditional syrup sweetmeat. National Conference on Food Industries, 27-28 February, Quchan, Iran. [In Persian]
[3] Tavakolipour, H., & Kalbasi Ashtari, A. (2013). Determination of rheological properties of grape molasses. J. Nut. Food Sci. Technol., 40(10), 129–137. [In Persian]
[4] MaghamiKia, H., & Ahmadzadeh GhaviDel, R. (2011). A review of processing, nutritional value and applications of grape syrup. National Conference on Food Industries, 27-28 February, Quchan, Iran. [In Persian]
[5] Saghari, V., & Shakouri, Sh. (2013). Investigating the effect of replacing grape syrup with sugar in enriched biscuits. 2th National Conference on Food Industries, 29-30 April, Quchan, Iran. [In Persian]
[6] Batu, A., Arslan, A., & Eroğlu, A. (2014). Effects of black grape syrup on texture, colour and sensory qualities of value added Turkish delight (Lokum). J. Food Sci., 8, 1-8.
[7] Jha, S.N., Jaiswal, P., Grewal, M.K., Gupta, M., & Bhardwaj, R. (2016). Detection of adulterants and contaminants in liquid foods. J. Food Sci., 56, 1662–1684.
[8] Hong, E., Lee, S.Y., Jeong, J.Y., Park, J.M., Kim, B.H., Kwon, K., & Chun, H.S. (2017). Modern analytical methods for the detection of food fraud and adulteration by food category. J. Agri. Sci., 97, 3877–3896.
[9] Azad, T., & Ahmed, S. (2016). Common milk adulteration and their detection techniques. Int. J. Food Contam. 3(22).
[10] Ellis, D.I., Muhamadali, H., Allen, D.P., Elliott, C.T., & Goodacre, R. (2016). A flavour of omics approaches for the detection of food fraud. Curr Opin Food Sci., 10, 7–15.
[11] Ren, J., Deng, T., Huang, W., Chen, Y., & Ge, Y. (2017). A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PLoS One., 12(3): e0173567.
[12] El Darra, N., Rajiha, H.N., Saleh, F., Al-Oweini, R., Maroum, R.G., & Louka, N. (2017). Food fraud detection in commercial pomegranate molasses syrups by UV-VIS spectroscopy, ATR FTIR spectroscopy and HPLC methods. Food Control. 78, 132-137.
[13] Maurer, M.M., Mein, J.R., Chaudhuri, S.K., & Constant, H.L. (2014). An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chem., 165, 475-482.
[14] Subari, N., Saleh, J.M., Shakaff, A.Y.M., & Zakaria, A. (2012). A hybrid sensing approach for pure and adulterated honey classification. Sensors. 12, 14022-14040.
[15] Jackman, P., Sun, D.W., & Allen, P. (2011). Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci. Technol., 22(4), 185-197.
[16] Ma, J., Sun, D.W., Qu, J.H., Liu, D., Pu, H., Gao, W.H & Zeng, X.A. (2016). Applications of computer vision for assessing quality of agri-food products: a review of recent research advances. J. Critical Food Sci. Nutr., 56(1), 113-127.
[17] Naderi-Boldaji, M., Mishra, P., Ahmadpour-Samani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., & Izadi, Z. (2018). Potential of two dielectric spectroscopy techniques and chemometric analyses for detection of adulteration in grape syrup. Measurement. 127, 518-524.
[18] Mahdiani, M., & Sadr Nia, H. (2010). Grade raisins using image processing: identification cap stem and color.In: Proceedings of the 6th National Congress of Agricultural Machinery and Mechanization, University of Tehran, 14-15 September, Karaj, Iran. [In Persian]
[19] Fatahi, S., Taheri Geravand, A., & Shahbazi, F. (2017). Estimate freshness of chicken meat using image processing and artificial intelligent techniques. Iran J biosys. Eng., 48(4), 491–503. [In Persian]
[20] Yagoobi-Soureh, A., Alizadeh-Khaled Abad, M., & Rezazad Bari, M. (2013). Application of image processing for determination of L*, a*and b*indices in color measurement of foods. J. Food Res., 23(3), 411- 422.
[21] Shi, Z., & He, L. (2010). Application of neural networks in medical image processing. In: Proceedingsof the 2th International Symposium on Networking and Network Security, 2-4 April, Jinggangshan, China.
[22] Kavi Niranjana, K., & Kalpana Devi, M. (2015). RGB to Lab Transformation Using Image Segmentation. Int. J. Advance Res. Computer Sci. Management Stu., 3(11), 8-16.
[23] Zhou, X., Yuan, J., & Liu, H. (2015). A traffic light recognition algorithm based on compressive tracking. Int. J. Hybrid Info. Technol., 8(6), 323-332.
[24] Chaudhary, P., Chaudhari, A. K., Cheeran, A.N., & Godara, Sh. (2012). Color Transform Based Approach for Disease Spot Detection on Plant Leaf. Int. j. computer sci. tel., 3(6), 65-70.
[25] Shahriar Sazzad, T. M., Islam, S., Mahbubur Rahman Khan Mamun, M. & Zahid Hasan, M.D. (2013). Establishment of an Efficient Color Model from Existing Models for Better Gamma Encoding In Image Processing. Int. J. Image Proces., 7(1), 90-100.
[26] Sangwine, S.J., & Horne, R. E. N. (1998). The Colour Image Processing Handbook. Chapman & Hall, London.
[27] Goñi, S.M., & Salvadori, V.O. (2017). Color measurement: comparison of colorimeter vs. computer vision system. J. Food Measur. Char., 11(2), 538-547.
[28] Gonzalez, R.C., Woods, R.E., & Eddins, S.L. (2004). Digital Image Processing Using MATLAB, Pearson Prentice Hall: New Jersey, USA.
[29] Khulal, U., Zhao, J., Hu, W., & Chen, Q. (2016). Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms. Food Chem., 197, 1191–1199.
[30] Oveisi Argane, F., & Erfanian Omidvar, A. (2008). Extracting features using cross-sectional information for classification of brain signals in brain-computer communication systems. The CIS. J. Computer Sci. Eng., 6(3), 60-67.
[31] Labatut, V., & Cheri, H. (2011). Accuracy Measures for the Comparison of Classifiers. The 5th Int. Conf. Infor. Technol., Amman, Jordan.
[32] Ghasemi-Varnamkhasti, M., Mishra, P., Ahmadpour-Samani, M., Naderi-Boldaji, M., Ghanbarian, D., Tohidi, M., & Izadi, Z. (2019). Rapid detection of grape syrup adulteration with an array of metal oxide sensors and chemometrics. J. Eng. Agri, Envir. Food.12 (3) 351–359.
[33] Sheng Whei Miaw, C., Martins Sena, M., De Souza, S.V.C., Pilar Callao, M., & Ruisanchez, I. (2018). Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies. Food Chem., 266, 254-261.
[34] Zhu, X., Li, S., Shan, Y., Zhang, Z., Li, G., Su, D., & Liu, F. (2010). Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J. Food Eng., 101 (1) 92–97.