[1] Ghahraman, A. (2013). Flora of Iran. Research Institute of Forests and Rangelands(RIFR) Publisher,Vol. 27 Tehran, Iran. [In Persian]
[2] Kabiri, S., Sayyed-Alangi, S. Z. (2015). Comparison of Antioxidant effect of different extracts from Melissa officinalis leaves with immersion and microwave-assisted extractions and its oxidative stability on soybean oil. Innov. Food Technol., 2(4), 23-38. [In Persian]
[3] Omidbaigi, r. (2014). Production and processing of medicinal plants. third volume. Astan Quds Razavi Publications, Mashhad, Iran. [In Persian]
[4] Cakmak, G., Yıldız, C. (2011). The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food and Bioproducts Processing, 89, 103-108.
[5] Karami, H., Rasekh, M., Darvishi, Y., Khaledi, R. (2017). Effect of drying temperature and air velocity on the essential oil content of Mentha pulegium L. Innov. Food Technol., 5(1), 65-75. [In Persian]
[6] Akpinar, E.K., Bicer, Y., Cetinkaya, F. (2006). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. J. Food Eng., 3, 308-315.
[7] Doymaz, I., Tugrul, N., Pala, M. (2006). Drying characteristics of dill and parsley leaves. J. Food Eng., 3: 559-565.
[8] Karami, H., Rasekh, M., Darvishi, Y., Khaledi, R. (2017). Effect of drying temperature and air velocity on the essential oil content of Mentha aquatica L. J. Essent. Oil Bear. Pl., 20(4), 1131-1136.
[9] Karami, H., Rasekh, M., Darvishi, Y. (2017). Effect of temperature and air velocity on drying kinetics and organo essential oil extraction efficiency in a hybrid dryer. Innov. Food Technol., 5(1): 65-75. [In Persian]
[10] Karami, H., Rasekh, M. (2018). Investigation of mass transfer kinetics and modeling of tarragon drying(Artemisia dracunculus L.). Iranian Journal of Medicinal and Aromatic Plants., 5(1): 65-75. [In Persian]
[11] Alibas, I. (2006). Characteristics of chard leaves during microwave, convective, and combined microwave-convective drying. Dry. Technol., 24(11), 1425-1435.
[12] Yaldiz, O., Ertekin, C. (2001). Thin layer solar drying of some different vegetables. Dry. Technol., 19, 586-596.
[13] Panchariya, P.C., Popovic, D., Sharma, A.L. (2002). Thin-layer modeling of black tea drying process. J. Food Eng., 52, 349-357.
[14] Kaya, A., Aydin, O., (2009). An experimental study on drying kinetics of some herbal leaves. Energy Convers. Manag., 50, 118-124.
[15] Doymaz, I. (2009). Thin-layer drying of spinach leaves in a convective dryer. J. Food Process Eng., 32, 112-125.
[16] Doymaz, I. (2011). Drying of thyme (Thymus vulgaris L.) and selection of a suitable thin-layer drying model. J. Food Process. Preserv., 35, 458-465.
[17] Borah, A., Hazarika, K., Khayer, S.M. (2015). Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Inf. Process. Agric., 2, 85-92.
[18] Sharabiani, V. R., Taghinezhad, E., Hadipour Rokni, R. (2019). Modeling and Optimization of Energy Parameters in Rosmarinus officinalis Drying with Microwave Pretreatment. Innov. Food Technol., DOI: 10.22104/JIFT.2019.3500.1839. [In Persian]
[19] Karami, H. (2014). Design, manufacture and evaluation of hybrid dryers for medicinal plants. Master of Science thesis. Razi University, Kermanshah, Iran. [In Persian]
[20] Aghbashlo, M., Kianmehr, M., Samimi-Akhijahani, H. (2009). Evaluation of thin-layer drying models for describing drying kinetics of barberries (Barberries vulgaris). J. Food Process Eng., 32(2), 278-293.
[21] Aghbashlo, M., Kianmehr, M.H., Khani, S., Ghasemi, M. (2009). Mathematical modelling of thin-layer drying of carrot. Int. Agrophys., 23(4), 313-317.
[22] Karami, H., Lorestani, A.N., Tahvilian, R. (2018). Experimental study of performance of a Forced convection Hybrid Dryer (Solar-electric). Journal of New and Renewable Energy, 5(2), 107-115. [In Persian]
[23] Crank, J. (1975). The Mathematics of Diffusion. Clarendon Press, Oxford, Bristol, England.
[24] Rodriguez, I., Clemente, G., Sanjuan, N., Bon, I. (2014). Modelling drying kinetics of thyme (Thymus vulgaris L.): theoretical and empirical models, and neural networks. Food Sci. Technol. Int., 20: 13-22.
[25] Dehghannya, J., Hosseinlar, S. Heshmati M.K. (2018). Multi-stage continuous and intermittent microwave drying of quince fruit coupled with osmotic dehydration and low temperature hot air drying. Innov. Food Sci. Emerg Technol. 45, 132-151.