[1]. Mashak, A. (2014). A Brief Overview on Biodegradable Polymers in Drug Delivery Systems. Polymerization., 4(3), 23-35. [In Persian]
[2]. Sodeifi. B., Nazarnezhad, N., Sharifi,S.H. (2019). Investigation of mechanical and optical properties of papers coated with Polycaprolactone - Nanocrystalline cellulose - zinc oxide Nanoparticle. IJWPR., 34(1), 25-39. [In Persian]
[3]. Yamamoto, O. (2001). Influence of particle size on the antibacterialactivity of zinc oxide. Int. J. Inorg. Mater., 3(7): 643-646.
[4]. Zhang, L., Ding, Y., Povey, M., York, D. (2007). Investigationinto the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 9(3), 479-89.
[5]. Vaezi, Kh., Asadpour, G., Sharifi, H. (2019). Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films. Int. J. Biol. Macromol., 124, 519-529.
[6]S., Benedetti, M.F., Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 6(4), 866-70. Brayner, R., Ferrari-Iliou, R, Brivois, N., Djediat,
[7]. Roselli, M., Finamore, A., Garaguso, I., Britti, M.S., Mengheri, E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J. Nutr., 133(12), 4077-4082.
[8]. Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R. (2009). Enhanced antibacterial activity of cell injury. Adv. Funct. Mater., 19(6), 1-11.
[9]. Faramarzi, T., Jonidi jafari, A., Dehghani, S., Mirzabeygi, M., Naseh, M., Rahbar Arasteh, H. (2012). ASurvey of Bacterial Contamination of Food Supply in the West of Tehran. J. Fasa Univ. Med. Sci., 2(1), 11-18. [In Persian]
[10]. Normanno, T.G., Salandra, L.a., Occurrence, G. (2007). Characterization and antimicrobial resistance of enterotoxigenic Staphylococcus aureus isolated from meat and dairy products. Int. J. Food Microbiol., 115(3), 290-296.
[11]. Mirhosseini, M., Yazdani Kashkoli, N., Dehghan, H. (2016). Investigation of antimicrobial properties of chitosan–ZnO nanocomposite. RJMS., 23(147), 104-114. [In Persian]
[12]. Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Jimenez de Aberasturi, D., Ruiz de Larramendi, I., Rojo, T. (2012). Antibacterial properties of nanoparticles. Trends Biotechnol., 30(10), 499–511.
[13]. Shanshan, G., Xiaoming, S., Jianhua, W., Shitao, Y., Fushan, C., Xinyu, S. (2017). Structure, mechanical properties and antimicrobial activity of nano zno/cellulose composite films. Cellul. Chem. Technol., 51(3-4), 355-361.
[14]. Abdollahi, S., Pourahmad, A., Asadpour, L. (2018). Synthesis and Characterization of Graphene -ZnO NPs Nanocomposite and Its Application for Antibacterial Activities. J. Fasa Univ. Med. Sci., 8(2), 805-814. [In Persian]
[15]. Li, X.H., Xing, Y.G., Li, W.L., Jiang, Y.H., & Ding, Y.L. (2010). Antibacterial and Physical Properties of Poly (vinyl chloride) based Film Coated with ZnO Nanoparticles. Food Sci. Technol. Int., 16(3), 225-232.
[16]. Smok, G. (2004). Pulp and paper technologists (4th ed.). Vancouver: Angus Wilde.
[17]. Shen, B., Chen, N., Wang, M., Xu, Ch., Wang, Y. (2013). Preparation and Optical Properties of ZnO-Cellulose Nanocomposites. Nanosci. Nanotechnol. Lett., 5(2), 309-313.
[18]. Gholami, R., Ghanbarzadeh, B., Dehghannya, J., Entezami, A.A., Abolghasemi Fakhri, L. (2015). Physicochemical Properties of Potato Starch-NCC Based Nanocomposites. Irrigation and Drainage Structures Engineering Research., 15(4), 27-38. [In Persian]
[19]. Yu, H., Yan, C., Lei, X., Qin, Z., Yao, J. (2014). Novel approach to extract thermally stable cellulose nanospheres with high yield. Mater. Lett., 131, 12–15.
[20]. Stoimenov, P.K., Klinger, R.L., Marchin, G.L., & Klabunde, K.J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir., 18(17), 6679-6686.
[21]. Liu, Y., He, L., Mustapha, A., Li, H. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol., 107(4), 1193-1201.