[1] Tomasik, P., Horton D.(2012).Enzymatic Conversions of starch. Adv. Carbohydr. Chem. Biochem., 68,59-436.
[2] Romaškevič ,T., Budrienė ,S., Liubertienė, A., Gerasimčik ,I., Zubrienė ,A., Dienys, G.(2007).Synthesis of chitosan-graft-poly(ethylene glycol) methyl ether methacrylate copolymer and its application for immobilization of maltogenase. Chemija., 18 ,33–38.
[3] Bakker, M., van de Velde, F.,van Rantwijk ,F., Sheldon , R.A. (2000). Highly efficient immobilization of glycosylated enzymes into polyurethane foams.
Biotechnol. Bioeng.,70, 342–348.
[4] Straksys, A., Kochane, T., Budriene, S.(2016).Catalytic properties of maltogenic a-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles. Food Chem., 294–299
[5] Demir, A.,Topkaya, R., Baykal, A. (2013).Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron.,65,282-287.
[7] Talekar, S., Pandharbale ,A., Ladole, M., Nadar, S.H., Mulla, M., Japhalekar, K., Pattankude, K., Arage, D.( 2013). Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour. Technol.,147,269-275.
[8] Naadar, S.S., Rathod ,V.K.(2015).Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme. Microb. Technol., 83, 78-87.
[9] Cao L., Langen L., Sheldon R.A.(2003). Immobilised enzymes: carrier-bound or carrier-free? Curr. Opin. Biotechnol.,14(4) ,387–394.
[10] Matijosˇyte, I., Arends, I.W.C.E., Vries, S., Sheldon, R.A.(2010). Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J. Mol. Catal. B: Enzym.,62,142–148.
[11] Talekar, S., Ghodake , V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S.H., Mulla, M., Ladole, M. (2012). Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresour. Technol., 123, 542–547.
[12] Torabizadeh, H., Mikani, M. (2018). Kinetic and thermodynamic features of nanomagnetic cross-linked enzyme aggregates of naringinase nanobiocatalyst in naringin hydrolysis, Int. J. Biol. Macromol., 119, 717–725.
[13] Bhattacharya ,A. B., Pletschke, I. (2014) .Magnetic cross-linked enzyme aggregates (CLEAs): A novel concepttowards carrier free immobilization of lignocellulolytic enzymes. Enzyme. Microb. Technol., 61-62, 17–27
[14] Lu, A.H., Salabas ,E.L., Schüth, F.(2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed.,46 (8), 1222-44.
[15] Laurent ,S., Forge ,D., Port ,M., Roch, A., Robic, C., Elst, L.V.(2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 108, 2064-2110.
[16] Cao, M., Wang ,J., Li ,Z., Ge ,W., Yue, T., Li ,R .( 2012). Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends Food. Sci.Technol., 27, 47-56.
[17] Gupta ,A., Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials., 26, 3995-4021.
[18] Schüth ,F.,Lu ,A.H.,Salbas, E.L. (2007). Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed., 46, 1222-1244.
[19] Reddy, L., Arias ,J., Nicolas, J., Couvreur ,P. (2012). Magnetic nanoparticles: Design and
Characterization, Toxicity and Biocompatibility. Pharmaceutical and Biomedical Applications . Chem. Rev., 112, 5818-5878.
[20] Berry ,C.C., Curtis ,A.S.G.(2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 36, 198-206.
[21] Cruz-Izquierdo,A., Pico´, E.A., Lo´pez, C., Serra, J.L., Liama,M. J. (2014). Magnetic Cross-Linked Enzyme Aggregates (mCLEAs) of Candida antarctica Lipase: An Efficient and Stable Biocatalyst for Biodiesel Synthesis. Biochem. Mol. Biol. Int., 436, 1145-1151.
[22] Liu ,W., Bai, S., Sun, Y.(2004). Preparation of nano-particles and its application in lipase immobilization. J. Process .Eng., 4, 362-366.
[23] Khoshnevisan, K., Bordbar ,A.K., Zare, D., Davoodi ,D., Noruzi ,M., Barkhi, M.(2011). Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J., 171, 669-673.
[24] Hsieh, H.C., Kuan ,I.C., Lee, S.L., Tien, G.Y., Wang, Y.J., Yu, C.Y.(2009). Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles. Biotechnol. Lett., 31(4), 557-563.
[25] Namdeo, M., Bajpai ,S.K.(2009). Immobilization of a-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal. B: Enzym ., 59, 134-139.
[26] Torabizadeh ,H., Habibi-Rezaei, M., Safari, M., Moosavi-Movahedi ,A.A., Sharifizadeh ,A., Azizian, H., Amanlou ,M. (2011). Endo-inulinase stabilization by pyridoxal phosphate modification: A kinetics, thermodynamics, and simulation approach. Appl. Biochem. Biotechnol., 165, 1661-1673.
[27] Zia, M., Ali, A., Zafar, H., Haq, I.U., Phull ,A.R., Ali, J.S.,Hussain, A.( 2016).Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.
Nanotechnol. Sci. Appl., 9, 49-67.
[28] Couto, G., Klein. J., Schreiner .W., Mosca ,D., Oliveira ,A., Zarbin ,A. (2007). Nickel nanoparticles obtained by a modified polyol process: Synthesis, Characterization, and Magnetic Properties. J. Colloid Interface Sci., 311, 461-468.
[29] Bahmaie, M., Abbasi ,L., Faraji, M. (2013). Synthesis of magnetic nanoparticles (Fe3O4) and its application for extraction and preconcentration of drug sample from environmental samples. J. Semnan., 8, 29-37.
[30] Gao, Y., Kyratzis ,I. (2008). Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-A critical assessment. Bioconjugate Chem., 19, 1945-1950.
[31] Nakamura, T., Ogata ,Y., Akichika ,S., Nakamura, A., Ohta ,K. (1995). Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. J. Ferment. Bioeng., 80, 164-169.
[32] Missau, J., Scheid, A.J., Foletto ,E.L., Jahn ,S.L., Mazutti, M.A., Kuhn, R.C. (2014). Immobilization of commercial inulinase on alginate–chitosan beads. Enzyme Microb Technol., 2, 2-13.
[33] Torabizadeh, H., Tavakoli, M., Safari, M. (2014). Immobilization of thermostable Alpha-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. J. Mol. Catal. B: Enzym., 108, 13-20.
[34] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254.
[35] Viota, J.L., Arroyo, F.J., Delgado, A.V., Horno, J. (2010) Electrokinetic characterization of magnetite nanoparticles functionalized with amino acids. J. Colloid Interface Sci. 344, 144–149.
[36] Antal, I., Koneracka, M., Kubovcikova, M., Zavisova, V., Khmara, I., Lucanska, D., Jelenska, L., Vidlickova, I., Zatovicova, M., Pastorekova, S., Bugarova, N., Micusik, M.,
Omastova, M., Kopcansky, P. (2018). D,L-lysine functionalized Fe3O4 nanoparticles for detection of cancer cells. Colloids Surf. B: Biointerfaces. 163, 236–245.
[37] Vršanská, M., Vobˇerková, S., Jiménez Jiménez, A.M., Strmiska, V., Adam, V. (2017). Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes. Int. J. Environ. Res. Public Health. 23, 1-15.
[38] Ribeiro, M.H.L., Rabaça, M. (2011). Cross-linked enzyme aggregates of naringinase: novel
biocatalysts for naringin hydrolysis. Enzyme Res., 2011, 1-8.
[39] Ramachandran, N., Hamborg, E.S., Versteeg, G.F. (2013). The effect of aqueous alcohols(methanol, t-butanol) and sulfolane on the dissociation constants and thermodynamic properties of alkanolamines. Fluid Phase Equilib., 360, 36–43.
[40] Sheldon, R.A., van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soci. Rev., 42, 6223–6235.