[1] Peter, K. V. (2012). Handbook of Herbs and Spices, 2nd ed., Woodhead Publishing: Cambridge, U.K, pp 215-248.
[2] Banach, U., Tiebe, C., Hübert, T. (2012). Multigas sensors for the quality control of spice mixtures. Food Control., 26, 23-27.
[3] Ghasemi-Varnamkhasti M., Tohidi M., Mishra P., Izadi Z. (2018). Temperature modulation of electronic nose combined with multi-class support vector machine classification for identifying export caraway cultivars. Postharvest Biol Tec., 138, 134–139.
[4] Liu, H., Zeng, F., Wang, Q., shiyi, O., Gu, F. (2013). The effect of cryogenic grinding and hammer milling on the flavour quality of ground pepper (Piper nigrum L.). Food Chem., 141, 3402–3408.
[5] Colak, H., Baris, E., Hampikyan, H., Nazli, B. (2006). Determination of Aflatoxin Contamination in Red-Scaled, Red and Black Pepper by ELISA and HPLC. J Food Drug Anal., 14, 292-296.
[6] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Ahmadi, H., Razavi, S.H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Eng. Agric. Environ. Food., 8, 44-51
[7] Figen, F., Balaban, M. (2008). Electronic nose technology in food analysis: In Handbook of food analysis instruments, 1st ed, CRC Press Taylor & Francis Group, Boca Raton, pp 365-378.
[8] Peris, M., Escuder-Gilabert, L. (2009). A 21st century technique for food control: electronic noses. Analytica Chimica Acta., 638, 1-15.
[9] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Rodriguez-Mendez, M.L., Lozano, J., Razavi, S.H., Ahmadi, H. (2011b). Potential application of electronic nose technology in brewery. Trends Food Sci. Technol., 22, 165–174.
[10] Zhang, H., Balaban, M., Principe, J. C., Portier, K. (2005). Quantification of spice mixture compositions by electronic nose. J. Food Sci., 70, 253-258.
[11] Loutfi, A., Coradeschi, S., Mani, G.K., Shankar, P. Rayappan, J.B. (2015). Electronic noses for food quality: a review. J. Food Eng., 144, 103–111.
[12] Monroy, J.G., Gonźalez-Jiḿenez, J., Blanco, J.L. (2012). Overcoming the slow recovery of MOX gas sensors through a system modeling approach. ACS Sens., 12, 13664–13680.
[13] Herrero-Carrón, F., Yánez, D.J., Rodríguez, F. (2015). An active, inverse temperature modulation strategy for single sensor odorant classification. Sens. Actuators, B., 555–563.
[14] Nakata S. and Okunishi H. (2005). Characteristic responses of a semiconductor gas sensor depending on the frequency of a periodic temperature change. Appl. Surf. Sci., 240: 366- 374.
[15] Ngo, K.A., Lauque, P., Aguir, K. (2007). High performance of a gas identification system using sensor array and temperature modulation. Sens. Actuators, B., 209–216.
[16] Hossein-Babaei F. and Amini A. (2014). Recognition of complex odors with a single generic tin oxide gas sensor. Sens. Actuators, B., 194:156-163
[17] Smulko J. M., Trawka M., Granqvist C.G., Ionescu R., Annanouch F., Llobet E. and Kish L.B. (2015). New approaches for improving selectivity and sensitivity of resistive gas sensors: a review. Sensor Review, 35, 340-347.
[18] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Ahmadi, H., Razavi, S.H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Eng. Agric. Environ. Food., 8, 44-51.
[19] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Bonyadian, M., Mohtasebi, S. (2018). Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int. Dairy J., 77, 38–46.
[20] توحیدی، م.؛ قاسمی ورنامخواستی، م.؛ غفاری نیا، و.؛ محتسبی، س.س.؛ بنیادیان، م.؛ (1395). ساخت و توسعه یک سامانه ماشین بویایی در ترکیب با روشهای شناسایی الگو برای تشخیص تقلب فرمالین در شیر خام. مهندسی بیوسیستم ایران، جلد 47، شماره 4، ص 1-10.
[21] Azid, S.I., Kumar, S. (2011). Analysis and Performance of a Low Cost SMS Based Home Security System. Int. J. Smart Home, 5, 15-24.
[22] Ghasemi-Varnamkhasti, M., Safari Amiri, Z., Tohidi, M., Dowlati, M., Mohtasebi, S.C., Silva, A.D.S., Fernandes, D., Araujo, M. (2018). Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta, 176, 221–226.
[23] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Bonyadian, M., Mohtasebi, S. (2018).Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: A novel method. Measurement, 124, 120-129.
[24] Aleixandre, M.J., Lozano, J., Gutiérrez, I., Sayago, M.J., Fernández Horrillo, M.C. (2008). Portable e-nose to classify different kinds of wine. Sens. Actuators, B., 131 (1), 71–76.
[25] Yu, H., Wang, J., Xiao, H., Liu, M. (2009). Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sens. Sens. Actuators, B., 378–382.
[26] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S.H.
Dicko, A. (2012). Discriminatory power assessment of the sensor array of an electronic ose system for the detection of non alcoholic beer aging. Czech J Food Sci, 30, 236–240.
[27] صفری امیری، ز.؛ قاسمی ورنامخواستی، م.؛ توحیدی، م.؛ محتسبی، س.س.؛ دولتی، م. (1396). استفاده از سامانه ماشین بویایی بهمنظور تشخیص تقلب در زیره کوهی. علوم و فناوریهای نوین غذایی، جلد 5، شماره 3، ص 527- 541.
[28] Amari, A. El., Bari, N., Bouchikhi, B. (2007). Electronic nose for anchovy freshness monitoring based on sensor array and pattern recognition methods: principal components analysis, linear discriminant analysis and support vector machine. Int J Found Cpmput S., 6, 61–67.
[29] Balasubramanian, S., Panigrahi, S., Logue, C.M., Marchello, M. (2009). Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. J. Food Eng., 91, 91–98.
[30] Omid, M., Mahmoudi, A. Omid, M. H. (2009). An intelligent system for sorting pistachio nut varieties. Expert Syst. Appl., 36, 11528–11535.
[31] Oliveros, C.C., Pavon, J.L.P., Pinto, C.G., Laespada, E.F., Cordero, B.M., Forina, M. (2002). Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal. Chim. Acta., 459, 219–228.
[32] Carmona, M., Martinez, J., Zalacain, A., Rodriguez-Mendez, M.L., de Saja, J.A., Alonso, G.L. (2006). Analysis of saffron volatile fraction by TD–GC–MS and e-nose. Eur. Food Res. Technol., 223, 96–101.
[33] Baby, R.E., Sance, M.M., Bauzá, M., Messina, V.M., Gómez, A.R., Burba, j.L. (2009). Electronic nose study of powdered garlic. Sens. Trans. J., 107, 26–34.
[34] Tahri, K., Tiebe, C., Bougrini, M., Saidi, T., El Alami-El Hassani, N., El Bari, N., Hübert, T., Bouchikhi, B. (2015). Characterization and discrimination of saffron by multisensory systems, SPME-GC-MS and
UV-vis spectrophotometry. Anal. Methods., 7, 10328–10338.