[1] Hong, X., & Wang, J. (2014). Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. J. Food Eng., 126, 89-97.
[2] Rizwan, M., Rodriguez-Blanco, I., Harbottle, A., Birch-Machin, M.A., Watson, R.E.B., Rhodes, L.E. (2011). Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Brit. J. Dermatol., 164, 154-162.
[3] Burton-Freeman, B., Talbot, J., Park, E., Krishnankutty, S., Edirisinghe, I. (2012). Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol. Nutr. Food Res., 56, 622-631.
[4] Zhang, L., Schultz, M.A., Cash, R., Barrett, D.M., McCarthy, M.J. (2014). Determination of quality parameters of tomato paste using guided microwave spectroscopy. Food Control., 40, 214-223.
[5] Biondi, A., Guedes, R. N. C., Wan, F. H., & Desneux, N. (2018). Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu rev entomol., 63, 239-258.
[6] Liu, C., Hao, G., Su, M., Chen, Y., & Zheng, L. (2017). Potential of multispectral imaging combined with chemometric methods for rapid detection of sucrose adulteration in tomato paste. J. Food Eng., 215, 78-83.
[7] Hong, X., Wang, J., & Qi, G. (2014). Comparison of spectral clustering, K-clustering and hierarchical clustering on e-nose datasets: application to the recognition of material freshness, adulteration levels and pretreatment approaches for tomato juices. Chemom. Intell. Lab. Syst., 133, 17-24.
[8] Du, L., Lu, W., Cai, Z. J., Bao, L., Hartmann, C., Gao, B., & Yu, L. L. (2018). Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics. Food chem., 240, 573-578.
[9] Sciuto, S., Esposito, G., Dell'Atti, L., Guglielmetti, C., Acutis, P. L., & Martucci, F. (2017). Rapid Screening Technique to Identify Sudan Dyes (I to IV) in Adulterated Tomato Sauce, Chilli Powder, and Palm Oil by Innovative High-Resolution Mass Spectrometry. J Food Prot., 80(4), 640-644.
[10] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S.H. & Dicko, A. (2011). Aging fingerprint characterization of beer using electronic nose. Sens. Actuator B-Chem., 159, 51– 59.
[11] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S.H. & Dicko, A. (2012). Discriminatory power assessment of the sensor array of an electronic nose system for the detection of nonalcoholic beer aging. Czech J. Food Sci, 30(3), 236–240.
[12] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Ahmadi, H.& Razavi, S.H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Engineering in Agriculture, Envir. Food., 8, 44-51.
[13] Men, H., Shi, Y., Jiao, Y., Gong, F., & Liu, J. (2018). Electronic nose sensors data feature mining: a synergetic strategy for the classification of beer. Anal. Methods., 10, 2016-2025.
[14] Ghasemi-Varnamkhasti, M., Tohidi, M., Mishra, P., & Izadi, Z. (2018). Temperature modulation of electronic nose combined with multi-class support vector machine classification for identifying export caraway cultivars. Postharvest Biol Technol., 138, 134-139.
[15] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Bonyadian, M., & Mohtasebi, S. S. (2018). Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int Dairy J., 77, 38-46.
[16] Haddi, Z., Alami, H., ElBari, N., Tounsi, M., Barhoumi, H., Maaref, A., Jaffrezic-Renault,N. & Bouchikhi, B. (2013). Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Res Int., 54, 1488–1498.
[17] Ghasemi-Varnamkhasti, M., Amiri, Z. S., Tohidi, M., Dowlati, M., Mohtasebi, S. S., Silva, A. C., & Araujo, M. C. (2018). Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta., 176, 221-226.
[18] Tahri, K., Tiebe, C., El Bari, N., Hübert, T., & Bouchikhi, B. (2017). Geographical classification and adulteration detection of cumin by using electronic sensing coupled to multivariate analysis. Proc. Technol., 27, 240-241.
[19] Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2017). Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Comput Electron Agric., 141, 46-53.
[20] Jolayemi, O. S., Tokatli, F., Buratti, S., & Alamprese, C. (2017). Discriminative capacities of infrared spectroscopy and e-nose on Turkish olive oils. Eur Food Res Technol., 243(11), 2035-2042.
[21] Ordukaya, E., & Karlik, B. (2017). Quality Control of Olive Oils Using Machine Learning and Electronic Nose. J Food Quality, 17, 1-7.
[22] Baskar, C., Nesakumar, N., Rayappan, J. B. B., & Doraipandian, M. (2017). A framework for analysing E-Nose data based on fuzzy set multiple linear regression: Paddy quality assessment. Sens Actuators A Phys., 267, 200-209.
[23] Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement., 124, 447-452.
[24] Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement., 82, 105-114.
[25] Esteki, M., Farajmand, B., Kolahderazi, Y., & Simal-Gandara, J. (2017). Chromatographic Fingerprinting with Multivariate Data Analysis for Detection and Quantification of Apricot Kernel in Almond Powder. Food Anal Method., 10, 3312-3320.
[26] Varmuza K, Filzmoser P. (2009). Introduction to multivariate statistical analysis in chemometrics. 1st Edition. CRC Press, Boca Raton. pp 1-336.
[27] Smola AJ, Schölkopf B. (2004). A tutorial on support vector regression. Stat Comput., 14: 199–222.
[28] Mabood, F., Hussain, J., Jabeen, F., Abbas, G., Allaham, B. A., Albroumi, M., & Haq, Q. M. (2018). Applications of FT-NIRS combined with PLS multivariate methods for the detection & quantification of saccharin adulteration incommercial fruit juices. Food Addit Contam. 35(6), 1052-1060.
[29] Geladi P, Kowalski BR. (1986). Partial least-squares regression: a tutorial. Anal Chim Acta., 185(6):1–17.
[30] Oussama, A., Elabadi, F., Platikanov, S., Kzaiber, F., & Tauler, R. (2012). Detection of olive oil adulteration using FT-IR spectroscopy and PLS with variable importance of projection (VIP) scores. J Am Oil Chem Soc., 89, 1807-1812.
[31] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Mohtasebi, S. S., & Bonyadian, M. (2018). Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: A novel method. Measurement. 124, 120-129.
[32] Bhattacharyya N., Bandhopadhyay R. (2010) Electronic Nose and Electronic Tongue. In: Jha S. (eds) Nondestructive Evaluation of Food Quality. Springer, Berlin, Heidelberg: pp 73-100.