olfactory machine system,an effective solution for detection of adulteration in rosewater

Document Type : Research Article

Authors

1 MSc. student, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University

2 Assistant Professor, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University

3 Associate Professor, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University

4 Ph.D., Young Researchers Club, Islamic Azad University of Shahrekord

5 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Shahrekord University

Abstract

Rosewater is one of the main products of rosa damascena and is a traditional long-lasting product in the Kashan region that has a global reputation. Regarding the use of rosewater in the treatment of rheumatic, cardiovascular, and also in the baking of different types of sweets and the preparation of ice creams, the main detection or adulteration of the produced rosewater is of particular importance. In this research, the ability to use an olfactory machine system (electronic nose) based on metal oxide semiconductor sensors as a non-destructive tool for detecting different levels of adulteration in rosewater and its authenticity assessment was studied. Principal component analysis (PCA), linear discriminant analysis (LDA), loading analysis, support vector machine (SVM) and decision tree (DT) were the methods used to achieve this goal. Based on the results, the PCA with the two main components of PC1 and PC2 described 92% of the variance of the data set for the used samples. In the sensor array, MQ4, TGS2620 and FIS sensors revealed the highest loading coefficient values and TGS822 and MQ8 sensors devoted the lowest ones. Based on the results of LDA method, the accuracy of the classification was 94%. By use of support vector machine with linear kernel function, in the C-SVM method, training and validation accuracy were obtained 98.75% and 87.5%, respectively. Also, the accuracy of the decision tree method in the classification of samples of rosewater was 80%. Based on the results, the olfactory machine system based on MOS sensors in combination with the pattern recognition methods has the ability to detect adulteration in rosewater and the LDA method has the highest classification accuracy. The research team also suggests using the system ability to detect adulteration in other products with potential for adulteration.

Graphical Abstract

olfactory machine system,an effective solution for detection of adulteration in rosewater

Highlights

  • Detection of adulteration in rosewater using olfactory machine system
  • Determining the appropriate timing and working stages of the olfactory machine system for detection of adulteration in rosewater
  • Feature extraction from response patterns of sensors and determination of the most effective sensors was done

Keywords

Main Subjects


 [1] جایمند، ک.؛ رضایی، م.ب. (۱۳۸۰) اسانس و دستگاه­های اسانس­گیری تحقیقات گیاهان دارویی و معطر ایران. انتشارات موسسه تحقیقات جنگل­ها و مراتع تهران، ص ۳۲-۳۱ و ۸۰-۷۹.
 [2] کافی، م.؛ ریاضی، ی. (۱۳۸۰) پرورش گل محمدی و تولید گلاب. انتشارات پرچین تهران، ۹۸ ص.
 [3] عاصمی، ذ.ا.؛ شاکری، ح.؛ منصوری، ق.خ.؛ دولتی، م.ع.؛ حسینی، ا. (۱۳۸۴) میزان اسانس گلاب­های تولیدی و عرضه شده شهرستان کاشان در بهار. فصلنامه علمی پژوهشی فیض. جلد 10، شماره 3، ص 51-47.
[4] ثنایی فر، ع.؛ محتسبی، س. س.؛ قاسمی ورنامخواستی، م.؛ احمدی، ح. (1394). طراحی، ساخت و ارزیابی عملکرد ماشین بویایی (بینی الکترونیکی) بر پایه حسگرهای نیمه هادی اکسید فلزی (MOS) به­منظور پایش رسیدگی موز. مجله ماشین­های کشاورزی. جلد 5، شماره 1، ص 121-111.
[5] Gardner, J.W., Bartlett, P.N. (1994). A brief history of electronic noses. Sens  Actuat. B: Chemical, 18(1-3), 210-211.
 [6] تقی زاده، م.؛ عاصمی، ذ.ا.؛ فرجی، ع.م.؛ عابدی محتسب، ت.پ.؛ اکبری، ح. (1381) بررسی کمی و کیفی گلاب­های تولیدی و عرضه شده در شهرستان کاشان در سال81-80 .طرح تحقیقاتی شماره 8008 ،دانشگاه علوم پزشکی کاشان.
[7] Gorji-Chakespari, A., Nikbakht, A. M., Sefidkon, F., Ghasemi-Varnamkhasti, M., Valero, E. L. (2016). Classification of essential oil composition in Rosa damascena Mill. genotypes using an electronic nose. J. App. Res. Medicinal Aromatic Plants. 4, 27-34.
[8] Rao, B. R. R., Sastry, K. P., Saleem, S. M., Syamasundra, K. V., Ramesh, S. (2000).Volatile flower oils of three genotypes of rose-scented geranium. Flavor Forager J.l. 15, 105-107.
[9] Marina, A. M., Man, Y. B. C., Amin, I. (2010). Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein. JAOCS, J. Am. Oil Chemists Soc., 87 (3), 263-270.
[10] Yu, H., Wang, J., Xu, Y. (2007). Identification of adulterated milk using electronic nose. Sens. Materials. 19(5), 275–285.
[11] Hai, Z., Wang, J. (2006). Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sens. Actuat. B. 119, 449–455.
[12] Heidarbeigi, K., Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., Rezaei, K. (2014). Detection of adulteration in saffron samples using electronic nose. Int. J.l Food Properties, 18(7), 1391-1401.
[13] Banach, U., Tiebe, C., Hübert, T. (2012). Multi gas sensors for the quality control of spice mixtures. Food Cont., 26(1), 23-27.
 [14] حاجی­نژاد، م.؛ محتسبی، س.س؛ قاسمی ورنامخواستی؛ م.؛ آغباشلو، م. (1395) طبقه­بندی عسل­های با منشأ گیاهی مختلف با استفاده از یک سامانه ماشین بویایی. مجله مهندسی بیوسیستم ایران، جلد 74، شماره 3،  ص423 -415.
[15] Bhattacharyya, N., Bandyopadhyay, R., Bhuyan, M., Tudu, B., Ghosh, D., Jana, A. (2008). Electronic nose for black tea classification and correlation of measurements with “Tea Taster” marks. IEEE Trans. Instrument. Measurement, 57(7), 1313-1321.
[16] Ongo, E., Falasconi, M., Sberveglieri, G., Antonelli, A., Montevecchi, G., Sberveglieri, V., Sevilla III, F. (2012). Chemometric discrimination of Philippine civet coffee using electronic nose and gas chromatography mass spectrometry. Procedia Eng. 47, 977-980.
 [17] Pardo, M., Niederjaufner, G., Benussi, G., Comini, E., Faglia, G., Sberveglieri, G., Lundstrom, I. (2000). Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sens. Actuat. B: Chemical, 69(3), 397-403.
 [18] Liu, H., Zeng, F. K., Wang, Q. H., Wu, H. S. (2013). Studies on the chemical and flavor qualities of white pepper (Piper nigrum L.) derived from five new genotypes. European Food Res. Technol., 237(2), 245-251.
 [19] Chen, Q., Zhao, J., Chen, Z., Lin, H., Zhao, D. A. (2011). Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sens. Actuat. B: Chemical, 159(1), 294-300.
[20] Zou, H.Q., Li, S., Huang, Y.H., Liu, Y., Bauer, R., Peng, L., Yan, Y.H. (2014). Rapid identification of Asteraceae plants with improved RBF-ANN classification models based on MOS sensor E-nose. Evidence Based Complementary and Alternative Medicine. 2014, 1-6.
[21] Guohua, H., Jiaojiao, J., Deng, S., Xiao, Y., Mengtian, Z., Minmin, W., Dandan, Y. (2015). Winter jujube (Zizyphus jujuba Mill.) quality forecasting method based on electronic nose. Food Chem.. 170, 484-491.
[22] Jurs, P. C., Bakken, G. A., McClelland, H. E. (2000). Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Reviews, 100(7), 2649–2678.
 [23] توحیدی، م.؛ قاسمی ورنامخواستی، م.؛ غفاری نیا، و.؛ محتسبی، س.س.؛ بنیادیان، م.؛ (1395) ساخت و توسعه یک سامانه ماشین بویایی در ترکیب با روش­های شناسایی الگو برای تشخیص تقلب فرمالین در شیر خام. مجله مهندسی بیوسیستم ایران. جلد 47، شماره 4، ص 10-1.
 [24] قاسمی­ورنامخواستی، م. (1390). طراحی، توسعه و پیاده سازی سیستم ماشین بویایی و زبان بیوالکتریک بر پایه نیمه­هادی­های اکسید فلزی به­منظور آشکارسازی تغییر کیفیت ماءالشعیر در ترکیب با روش­های آنالیز تشخیص الگو. پایان نامه دکتری مهندسی مکانیک ماشین­های کشاورزی. دانشگاه تهران.
[25] Pearce, T. C., Gardner, J. W., Friel, S., Barlett, P. N., Blair, N. (2003). Electronic nose for monitoring the flavor of beers. Analyst, 118, 371–377.
[26] Arshak, K., Moore, E., Lyons, G. M., Harris, J., Clifford, S. (2004) A review of gas sensors employed in electronic nose applications. Sensor Review, 24 (2),181–198.
[27] Li, C., Heinemann, P., Sherry, R. (2007). Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sens. Actuat. B: Chemical, 125 (1), 301-310.
[28] Siebert, K. J. (2001). Chemometrics in brewing-A review. J. American Soc. Brewing Chem., 59, 147-156.
[29] Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M., Ahmadi, H., Razavi, S.H. (2015). From simple classification methods to machine learning for the binary discrimination of beers using electronic nose data. Eng. Agric.. Environ. Food, 8(1), 44-51.
[30] Sanaeifar, A., Mohtasebi, S.S., GhasemiVarnamkhasti, M., Ahmadi, H. (2014). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 150-114.
[31] صفری امیری، ز.؛ قاسمی ورنامخواستی، م.؛ توحیدی، م.؛ محتسبی، س.س.؛ دولتی، م. (1396). استفاده از سامانه ماشین بویایی به­منظور تشخیص تقلب در زیره کوهی. مجله فناوری­های نوین غذایی، 5، 527-541.
 [32] Fan, R.E., Chen, P.H., Lin, C.j. (2005). Working set selection using second order information for training support vector machines. J. Machine Learning Res.. 6, 1889–1918.
[33] D’heygere, T., Goethals, P. L., Pauw, N. D. (2003). Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates. Ecological Model., 160, 1-8.
 [34] Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Mohtasebi, S. S., Bonyadian, M. (2018). Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: A novel method. Measurement. 124,120-129.