Mathematical modeling of hot-air drying process of quince slices with pretreatment of osmotic dehydration: Determination of effective diffusivity coefficient and activation energy

Document Type : Research Article

Authors

1 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2 Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

Abstract

Pretreatment of osmotic dehydration in hot-air drying process is used with the aim of improvement in the nutritional, sensory and quality properties of the final dried product. In present study, the pretreatment of osmotic dehydration of quince slices and then hot air drying of it was performed. Osmotic dehydration was done in concentrations of 40, 45 and 50% sucrose and hot-air drying temperatures of 40, 50 and 60 °C. The ratio of sample to osmotic solution and also the temperature of osmotic solution were considered as 1:10 and 30 °C, respectively. Mathematical modeling of hot-air drying process of quince was evaluated using models of Newton, Page, modified Henderson and Pabis, simplified Fick diffusion, Modified Page equation-II, two-term, Wang and Singh, and logistics. The fitting of the experimental data with models was done in order to determine the optimum model to describe the drying process, determination of effective diffusivity coefficient and activation energy. Drying time for untreated sample at 40, 50 and 60 °C was 509.671±1.527, 491±1.732 and 459.500±0.707 min, respectively. In addition, for samples with pretreatment of osmotic dehydration, drying time at studied temperatures of air drying was decreased with increase of sucrose concentration in osmotic solution. Page model was determined as the best model for describtion of mass transfer kinetic during drying of quince. The concentration of 50% osmotic solution and temperature of 60 °C resulted to effective diffusivity coefficient of 2.817×10-10 (m2/s) and drying time of 286±1.413 min. Furthermore, effective diffusivity coefficient was increased with an increase in air drying temperature. The concentration of osmotic solution was also related inversely to activation energy. Sensory evaluation showed an increase in concentration of osmitic solution caused an increase in overall acceptability.

Graphical Abstract

Mathematical modeling of hot-air drying process of quince slices with pretreatment of osmotic dehydration: Determination of effective diffusivity coefficient and activation energy

Highlights

  • Page model was determined as the best model for description of mass transfer kinetic during drying of quince.
  • The concentration of 50% osmotic solution and temperature of 60 °C resulted to drying time of 286±1.413 min and effective diffusivity coefficient of 2.817×10-10 (m2/s) for quince samples.
  • Sensory evaluation showed an increase in concentration of osmotic solution caused an increase in overall acceptability.

Keywords

Main Subjects


[1] Doymaz, I., Demir, H., Yildirim, A. (2015). Drying of quince slices: Effect of pretreatments on drying and rehydration characteristics. Chem. Eng. Commun., 202 (10), 1271–1279.
[2] اکبریان، م.؛ قنبرزاده، ب.؛ دهقان‏نیا، ج.؛ صوتی خیابانی، م. (۱۳۹۶) بهینه‏سازی محلول اسمزی و بررسی اثرات آبگیری اسمزی بر ویژگی‏های بافتی و رنگی میوه (به) فرآیند شده با پوشش‏های پلی‏ساکاریدی فعال، پژوهش‏های علوم و صنایع غذایی ایران. جلد ۹، شماره ۲، ص ۱۶۵-۱۷۴.
[3] Koc, B., Eren, I., Ertekin, F. K. (2008). Modelling bulk density, porosity and shrinkage of quince during drying: The effect of drying method. J. Food Eng., 85 (3), 340–349.
[4] Akbarian, M., Ghanbarzadeh, B., Sowti, M., Dehghannya, J. (2014). Effects of pectin- CMC-based coating and osmotic dehydration pretreatments on microstructure and texture of the hot-air dried quince slices. J. Food Process. Pres., 39, 260–269.
[5] Patill, M. M., Kalse, S. B., Jain, S, K. (2012). Osmo-convective drying of onion slices. Res. J. Rec. Sci., 1 (1), 51-59.
[6] زیرجانی، ل.؛ توکلی‏پور، ح. (۱۳۸۹) مطالعه امکان تولید برگه موز توسط روش خشک‏کردن ترکیبی هوای داغ و مایکروویو، نشریه پژوهش‏های علوم و صنایع غذایی ایران، جلد ۶، شماره ۱، ص ۵۸-۶۷.
[7] Fernandes, F., Rodrigues, S., Gaspareto, O., Oliviera, E. (2006). Optimization of osmotic dehydration of banana followed by air-drying. J. Food Eng., 77: 188-193.
[8] Monnerat, S. M., Pizzi, T. R. M., Mauro, M. A., Menegalli, F. C. (2010). Osmotic dehydration of apples in sugar/salt solutions: Concentration profiles and effective diffusion coefficients. J. Food Eng., 100 (4), 604-612.
[9] Dehghannya, J., Emam-jomeh, Z., Sotudeh-Gharebagh, R., Ngadi, M. (2006). Osmotic Dehydration of Apple Slices with Carboxy-Methyl Cellulose Coating. Dry. Technol., 24, 45-50.
[10] Sahin, U., Ozturk, H. K. (2016). Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L), Innov. Food Sci. Emerg., 36, 104-111.
[11] da Silva, W. P., e Silva, C. M.D.P.S., Gama, F. J.A., Gomes, J. P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J. Saudi Soc. Agr. Sci., 13 (1), 67-74.
[12] Yang, X. H., Deng, Li. Z., Mujumdar, A. S., Xiao,H. W., Zhang, Q. Kan, Z. (2018). Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying, J. Food Eng., 231, 101-108.
[13] Rayaguru, K., Routray, W. (2012). Mathematical modeling of thin layer drying kinetics of stone apple slices. Int. Food Res. J., 19 (4), 1503-1510.
[14] Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N., Abdan, K. (2016). Evaluation of a suitable thin layer model for drying of pumpkin under forced air convection. Int. Food Res. J., 23 (3), 1173-1181.
[15] مشکانی، س. م.، پورفلاح، ز.، توکلی‏پور، ح.، محمدی، م.؛ نهاردانی، م. (۱۳۹۱) بررسی سینتیک خشک‏کردن لایه‏ای نازک کدوی سبز با فرایند جابه‌جایی هوای داغ. مجله علوم و فناوری غذایی، سال چهارم، شماره سوم، ص ۷۵-۸۲.
[16] Tzempelikos, D. A., Vouros, A. P., Bardakas, A. V., Filios, A. E., Margaris, D. P. (2014). Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Studies in Thermal Eng., 3, 79–85.
[171] محمدی، م.؛ پورفلاح، ز.؛ نهاردانی، م.؛ مشکانی، س. م. (۱۳۹۳) بهینه‏سازی ضریب نفوذ موثر رطوبت و مدل‏سازی ریاضی سینتیک خشک‎کردن برش‏های میوه به (Cydonia oblonga)، علوم غذایی و تغذیه، سال ۱۲، شماره ۱. ص ۴۹-۵۸.
[18] متولی، ع.؛ هدایتی، ف. (۱۳۹۶) بررسی تغییرات ضریب آهنگ ثابت خشک‏شدن در مدل‏های شبیه‏سازی با استفاده از پیش‏تیمارهای مختلف، فصلنامه فناوری‏های نوین غذایی، سال چهارم، شماره ١٥ ، ص ۳۹-۵۱.
[19] نایبندی آتشی، س.؛ مرتضوى، س. ع.؛ طباطبایی یزدی، ف.؛ محبی، م.؛ وریدی، م. ج. (۱۳۹۶) بهینه‏سازی فرایند آبگیری اسمزی و مدل‏سازی سینتیک انتقال جرم طی خشک‏کردن با هوای داغ گوشت شترمرغ، فصلنامه فناوری‏های نوین غذایی، سال چهارم، شماره ١٥ ، ص ۶۵-۷۶.
[20] AOAC. (1990). Official method of analysis, 15th ed. Association of official analytical chemists, Arlington, VA.
[21] Revaskar, V.A., Pisalkar, P.S., Pathare, P.B., Sharma, G.P. (2014). Dehydration kinetics of onion slices in osmotic and air convective drying process. Res. Agr. Eng. 60 (3), 92-99.
[22] Dadali, G., Demirhan, E. (2007). Color change kinetics of spinach undergoing microwave drying. Drying Technol., (25), 1713-1723.
[23] Saklar, S., Ungan, S., Katnas, S. (1999). Instrumental crispness and crunchiness of roasted hazelnuts and correlations with sensory assessment. J Food Sci., 64 (6), 1015-1019.
[24] Bruce, D. M. (1985). Exposed-layer barley drying, three models fitted to new data up to 150°C. J. Agri. Eng., (4), 337–347.
[25] Page, G.E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers. M.S. thesis, Department of Mechanical Engineering, Prude University, Prude, USA.
[26] Henderson, S. M. (1974). Progress in developing the thin layer drying equation. T. Am. Soc. Agr. Eng., 17 (6), 1167–1172.
[27] Wang, C. Y., Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE paper No: 78-3001, ASAE, St. Joseph, MI.
[28] Karathanos, V. T. (1999). Correlation of water content of dried fruits by drying kinetics. J. Food Eng., 39, 337-344.
[29] Diamante, L. M., Munro, P. A. (1991). Mathematical modeling of hot air drying of sweet potato slices. Int. J. Food Sci. Technol., 26 (1), 99-109.
[30] Diamante, L. M., Munro, P. A. (1993). Mathematical modeling of the thin layer solar drying of sweet potato slices. Sol. Energy, 51, 271-276.
[31] Aghbashlo, M., Kianmehr, M. H., Khani, S., Ghasemi, M. (2009). Mathematical modeling of carrot thin-layer drying using new model. Int. Agrophys., 23, 313-317.
[32] Alibas, I. (2014). Microwave, Air and Combined Microwave-Air Drying of Grape Leaves (Vitis vinifera L.) and the Determination of Some Quality Parameters. Int. J. Food Eng., 10 (1), 69-88.
[33] Crank, J. (1975). The mathematics of diffusion. 2nd ed. Oxford University Press, Oxford, 104-106.
[34] Li, Z., Kobayashi, N. (2005). Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition. Drying Technol., 23 (6), 1331–1342.
[35] Ibitwar, B. B., Kaur, B., Arora, S., Pathare, P. B. (2008). Osmo-Convective Dehydration of Plum. Int. J. Food Eng., 4 (8).
[36] خواجوى، ر.؛ شمس‏آبادی، ح.؛ اصغرى، ع. (۱۳۹۶) ارزیابى برخى از ویژگى‏هاى کیفى دانه هندوانه طى فرایند خشک‏کردن، فصلنامه فناوری‏های نوین غذایی، دوره ٥، شماره ٢، ص ۲۰۳-۲۱۸.
[37] Krokida, M., Karathanos, V., Maroulis, Z. (2000). Effect of osmotic dehydration on color and sorption characteristics of apple and banana. Dry. Technol., 18, 937-950.
[38] Zenoozian, M. S., Feng, H., Razavi, S., Shahidi, F., Pourreza, H. (2008). Image analysis and dynamic modeling of thin‐layer drying of osmotically dehydrated pumpkin. J. Food Process. Pres., 32 (1), 88-102.
[39] Yousefi, A., Niakousari, M., Moradi, M. (2013). Microwave assisted hot air drying of papaya (Carica papaya L.) pretreated in osmotic solution, Afr. J. Agr. Res., 8 (25), 3229-3235.
[40] Pisalkar, P. S., Jain, N. K., Pathare, P. B., Murumkar, R. P., Revaskar, V.A. (2014). Osmotic dehydration of aloe vera cubes and selection of suitable drying model. Int. Food Res. J., 21 (1), 373-378.
[41] Meisami-asl, E., Rafiee, S. (2009). Mathematical Modeling of Kinetics of Thin-layer Drying of Apple. Agricultural Engineering International: the CIGR E journal. Manuscript 1185.
[42] امام جمعه، ز.؛ علاء‏الدینی، ب. (1384) بهبود شاخص کیفی کیوی خشک‏شده و فرمولاسیون آن با استفاده از پیش فرایند اسمز، مجله علوم کشاورزی ایران، جلد 36، شماره 6، ص ۱۴۲۱-۱۴۲۷.