Physical, Barrier and Antimicrobial Properties of Sodium Caseinate-based Edible Film Containing Hemp Seed oil

Document Type : Research Article


1 MSc. in Food Technology, Department Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Assistant professor, Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Professor, Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran

4 Assistant professor, Department Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran


Biodegradable edible bioplarmers are the best alternatives to synthetic plastics. In this study, sodium caseinate edible films containing different levels of hemp seed oil (10, 20 and 30% w/w) was produced and their physical, barrier and antimicrobial properties were investigated. By adding hemp seed oil up to 30% (w/w), the thickness, transparency, and solubility of films decreased, and the contact angle increased. The permeability to water vapor was reduced from 76.4×10-11 to 5.1×10-11 g m-1s-1 Pa-1, and oxygen permeation was increased from 11 to 28.3 cm3μm cm-2 day-1 Kpa-1 by addition of hemp seed oil. The disk diffusion method was used to investigate the antimicrobial effect of sodium caseinate film containing hemp seed oil on three pathogenic bacterial strains including Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The largest inhibitory diameter for S. aureus, E. coli, and P. aeruginosa was 31.28, 19.05 and 15.40 mm, respectively. As a result, sodium caseinate films containing hemp seed oil has the most effect on gram-positive bacteria. The results revealed that that adding hemp seed oil improves the physical, barrier and antimicrobial properties of sodium caseinate-based films and coatings.


Main Subjects

[1]           Ray, S. S., Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in materials science, 50(8), 962-1079.
[2]           Elsabee, M. Z., Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. ‎Mater. Sci. Eng. C, 33(4), 1819-1841.
[3]           Abdul Khalil, H. P. S., Tye,Y. Y., Saurabh, C. K., Leh, C. P., Lai, T. K., Chong, E. W. N., Nurul Fazita, M. R., Mohd Hafiidz, J., Banerjee, A., Syakir, M. I. (2017). Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Poly. Lett., 11(4), 244-254.
[4]           Dainelli, D. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol., 19, 103-112.
[5]           Debeaufort, F., Quezada-Gallo, J.-A. Voilley, A. (1998). Edible films and coatings: tomorrow’s packagings: a review. Crit. Rev. Food Sci., 38(4), 299-313.
[6]           Umaraw, P., Verma, A. K. (2017). Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Critical reviews in food science and nutrition, 57(6), 1270-1279.
[7]           Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. Int. Food Res. J., 15(3), 237-248.
[8]           Atarés, L., Bonilla, J., Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J.Food Eng., 100, 678-687.
[9]           Eghbal, N., Degraeve, P., Oulahal, N., Yarmand, M. S., Mousavi, M. E., Gharsallaoui, A. (2017). Low methoxyl pectin/sodium caseinate interactions and composite film formation at neutral pH. Food Hydrocoll., 69, 132-140.
[10]         Guilbert, S., Cuq, B., Gontard, N. (1997). Recent innovations in edible and/or biodegradable packaging materials. Food Addit Contam., 14(6-7), 741-751.
[11]         Dehghani, S., Hosseini, S. V.,  Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A review. Food Chem., 240, 505-513.
[12]         Imran, M., Klouj, A., Revol-Junelles, A-M., Desobry, S. (2014). Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. J. Food Eng., 143,178-185.
[13]         Colak, B. Y., Peynichou P., Galland, S., Oulahal, N., Prochazka, F., Degraeve, P. (2016). Antimicrobial activity of nisin and natamycin incorporated sodium caseinate extrusion-blown films: A comparative study with heat-pressed/solution cast films. J. Food Sci., 81(5), 1141-1150.
[14]         Bonilla, J., Sobral, P. J. (2017). Antioxidant and physicochemical properties of blended films based on gelatin-sodium caseinate activated with natural extracts. J. Applied Polym. Sci., 134(7), 44467- 44477.
[15]         Arrieta, M. P., Peltzer, M. A., López,  J., Carmen Garrigós,  M., Valente, A. J. M., Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J. Food Eng., 121, 94-101.
[16]         Zuardi, A. W., Crippa, J. A., Hallak, J. E., Moreira, F. A., Guimarães, F. S. (2006).Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz. J. Med. Biol. Res., 39(4), 421-429.
[17]         Rios, J., Recio, M. (2005). Medicinal plants and antimicrobial activity. J. Ethnopharmacol., 100(1), 80-84.
[18]         Leizer, C., Ribnicky, D., Poulev, A., Dushenkov, S., Raskin, I. (2000). The composition of hemp seed oil and its potential as an important source of nutrition. J. Nutra. Functional Medical Foods., 2(4), 35-53.
[19]         کرمی، ز.؛ یوسفی، ق.؛ علیپورنجمی، م.؛ امام جمعه، ز. (1392) مدل سازی و بهینه سازی استخراج روغن شاهدانه به کمک اولتراسونیک و با روش سطح پاسخ. نشریه علوم غذایی و تغذیه، جلد 10، شماره2، ص 37 -44.
[20]         Broumand, A., Emam-Djomeh, Z., Hamedi, M., Razavi, S. H. (2011). Antimicrobial, water vapour permeability, mechanical and thermal properties of casein based Zataraia multiflora Boiss. extract containing film. LWT-Food Sci. Technol., 44(10), 2316-2323.
[21]         سازمان ملی استاندارد ایران، 1376. استاندارد ملی ایران به شماره 4091. تجزیه متیل استرهای اسیدهای چرب به روش گاز کروماتوگرافی، چاپ اول.
[22]         ASTM D1746 - 09, Standard test method for transparency of plastic sheeting. Philadelphia: American Society for Testing and Materials, 1997b.
[23]         Emam-Djomeh, Z., Moghaddam, A., Yasini Ardakani, S. A. (2015). Antimicrobial activity of pomegranate (Punica granatum L.) peel extract, physical, mechanical, barrier and antimicrobial properties of pomegranate peel extract-incorporated sodium cseinate film and application in packaging for ground beef. Packaging Technol. Sci., 28(10), 869-881.
[24]         ASTM E96-95, Standard test methods for water vapor transmission of material. Philadelphia: American Society for Testing and Materials, 1995.
[25]         ASTM D3985, Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. Philadelphia: American Society for Testing and Materials, 2010.
[26]         Baron, E., Finegold, S. M. (1990). Methods for testing antimicrobial effectiveness. Diagnostic Microbiology, 171-194.
[27]         Zaidan, M., Noor Rain, A., Badrul, A. R., Adlin, A., Norazah, A., Zakiah, I. (2005). In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed, 22(2), 165-170.
[28]         Horrobin, D. (1992). Nutritional and medical importance of gamma-linolenic acid. Prog. Lipid Res., 31(2), 163-194.
[29]         Galasso, I., Russo, R., Mapelli, S., Ponzoni, E., Brambilla, I. M., Battelli, G., Reggiani, R. (2016). Variability in seed traits in a collection of Cannabis sativa L. genotypes. Front. Plant Sci.,
[30]         Oomah, B. D., Busson, M., Godfrey, D. V., Drover, J. (2002). Characteristics of  hemp (Cannabis sativa L.) seed oil. Food chem., 76(1) , 33-43.
[31]         Da Porto, C., Natolino, A., Decorti, D. (2015). Effect of ultrasound pre-treatment of hemp (Cannabis sativa L.) seed on supercritical CO2 extraction of oil. J. Food Sci. Technol., 52(3), 1748-1753.
[32]         Torres-Salas, P., Pedrali, A., Bavaro, T., Ambrosini, S., Marrubini, G., Pappalardo, V. M., Massolini, G., Terreni, M., Ubiali, D. (2014). Preparation of PUFA concentrates as acylglycerols via enzymatic hydrolysis of hempseed oil (Cannabis sativa L.) in a homogeneous low-water medium. Eur. J. Lipid Sci. Technol., 116(11), 1496-1504.
[33]         Miller, K., Krochta, J. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci. Technol., 8(7), 228-237.
[34]         Ekrami, M., Emam-Djomeh, Z. (2014). Water vapor permeability, optical and mechanical properties of Salep-based edible Film. J. Food Process. Preserv., 38(4), 1812-1820.
[35]         Fang, Y. Tung, M. A., Britt, I. J., Yada, S., Dalgleish, D. G. (2006). Tensile and barrier properties of edible films made from whey proteins. J. Food Sci., 67(1), 188-193.
[36]         Gontard, N., Guilbert, S., Cuq, J. L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J.Food Sci., 57(1),190-195.
[37]         Hosseini, S. F., Rezaei, M., Zandi, M., Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil.  Ind Crops Prod., 67, 403-413.
[38]         Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Hosseini, S. M., Khaksar, R. (2014). Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym., 101, 582-591.
[39]         Khazaei, N., Esmaiili, M., Emam-Djomeh, Z., Ghasemlou, M., Jouki, M. (2014).Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr Polym., 102,199-206.
[40]         Wang, Z., Zhou, J., Xiao-xuan, W., Zhang, N., Sun, X., Ma, Z. (2014).The effects of ultrasonic/microwave assisted treatment on the water vapor barrier properties of soybean protein isolate-based oleic acid/stearic acid blend edible films. Food Hydrocoll., 35, 51-58.
[41]         Rocca-Smith, J. R., Marcuzzo, E., Karbowiak, T., Centa, J., Giacometti, M., Scapin, F., Venir, E., Sensidoni, A., Debeaufort, F. (2016). Effect of lipid incorporation on functional properties of wheat gluten based edible films. J. Cereal Sci, 69, 275-282.
[42]         Donhowe, G., Fennema, O. (1993). Water vapor and oxygen permeability of wax films. J. Am. Oil Chem. Soc., 70(9), 867-873.
[43]         Guilbert, S., Cuq, B., Gontard, N. (1997). Recent innovations in edible and/or biodegradable packaging materials. Food Addit Contam., 14(6-7), 741-751.
[44]         Parris, N., Coffin, D. R. (1997). Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films. J. Agric Food Chem., 45(5), 1596-1599.
[45]         Ghasemlou, M., Khodaiyan, F., Oromiehie, A., Yarmand, M. S. (2011). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. Int. J. Biol.Macromol., 49(3), 378-384.
[46]         Taqi, A., Askar, K. A., Nagy, K., Mutihac, L., Stamatin, L. (2011). Effect of different concentrations of olive oil and oleic acid on the mechanical properties of albumen (egg white) edible films. Afr. J. Biotechnol., 60(10), 12963-12972.
[47]         Pereda, M., Amica, G., Marcovich, N. E. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym, 87(2), 1318-1325.
[48]         Ma, W., Hu, D., Wang, H., Wang, L. (2012). Effect of homogenization conditions on properties of gelatin–olive oil composite films. J. Food Eng., 113(1), 136-142.
[49]         Gennadios, A., Weller, C., Testin, R. (1993). Temperature effect on oxygen permeability of edible protein-based films. J. Food Sci., 58(1), 212-214.
[50]         Erkan, N., Doğruyol, H., Günlü, A., Genç, İ. Y. (2014). Use of natural preservatives in seafood: plant extracts, edible film and coating. Journal of Food and Health Science, 1(1), 33-49
[51]         Zhang, Y., Ma, Q., Critzer, F., Zhong, Q. (2015). Physical and antibacterial properties of alginate films containing cinnamon bark oil and soybean oil. LWT-Food Sci. Technol., 64(1), 423-430.
[52]         Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M., Alejandra Martín-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll., 47, 168-177.
[53]         Jouki, M., Mortazavi, S. A., Tabatabaei Yazdi, F., Koocheki, A. (2014). Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr Polym., 99, 537-546.