Effect of Different Roasting Methods, Blanching and Pasteurization Conditions on Physicochemical and Sensory Characteristics of Hazelnut Milk

Document Type : Research Article

Authors

1 Assistant Professor, Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

2 Ph.D. Student, Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

High nutritional value and bioactive compounds in hazelnut has become a valuable nutrient. One of the ways to increase per capita consumption of hazelnut is processing of it with different methods such as production of hazelnut milk. In this study, application of different roasting methods (infrared, microwave and hot air oven) blanching time (0, 15 and 30 min) and pasteurization conditions (5 min at 95°C, 15 min at 85°C and 25 min at 75°C) in hazelnut production were investigated. Also, the asymmetric methods (completely randomized factorial and partial least squares regression) and symmetric methods (coefficients of determination and principal components analysis) were used for study of physicochemical characteristics, color parameters and sensory aspects. The results of this study showed that pH, physical stability index and L * significantly increased (p˂0.05) but the acidity, total solids content, protein, fat, viscosity and b * decreased with increasing of blanching time. Hazelnut roasting using infrared method, blanching for 15 minutes at 95 °C and then pasteurization for 15 minutes at 85 °C achieved the best physicochemical and sensory properties of hazelnut milk. It could be found from principal components analysis (PCA) that roasting methods of microwave and hot air oven results in the increase of sensory scores of cooked, chalky, roasted and bitter flavors. pH and acidity had the best significant correlation coefficients with physicochemical and sensory properties. Obtained R2 of partial least squares regression models were above the medium range. It shows the high efficiency of these models in prediction of sensory characteristics of infrared hazelnut milks from color analysis indices.

Keywords

Main Subjects


[1].            Maguire, L., O'sullivan, S., Galvin, K., O'connor, T. O'brien, N. (2004). Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr., 55(3), 171-178.
[2].            FAO. (2012). Food and Agriculture Organization of the United Nations: Rome, Italy.
[3].             Aranceta, J., Rodrigo, C. P., Naska, A., Vadillo, V. R. Trichopoulou, A. (2006). Nut consumption in Spain and other countries. Br. J. Nutr., 96(2), 3-11.
[4].            Lee, C. Beuchat, L. R. (1992). Chemical, physical and sensory characteristics of peanut milk as affected by processing conditions. J Food Sci., 57(2), 401-405.
[5].            Iserliyska, D., Chinnan, M. S. Resurreccion, A. V. A. (2012). Physicochemical and sensory properties of a peanut drink. Agric. Eng. Int.: CIGR Journal, 14(2), 49-57.
[6].            Malaki Nik, A., Tosh, S., Poysa, V., Woodrow, L. Corredig, M. (2008). Physicochemical characterization of soymilk after step-wise centrifugation. Food Res. Int., 41(3), 286-294.
[7].            Ahmadian-Kouchaksaraei, Z., Varidi, M., Varidi, M. J. Pourazarang, H. (2014). Influence of processing conditions on the physicochemical and sensory properties of sesame milk: A novel nutritional beverage. LWT Food Sci. Tech., 57(1), 299-305.
[8].             Demir, A. D. Cronin, K. (2005). Modelling the kinetics of textural changes in hazelnuts during roasting. Simul. Modell. Pract. Theory, 13(2), 97-107.
[9].            Özdemir, M. Devres, O. (2000). Analysis of color development during roasting of hazelnuts using response surface methodology. J. Food Eng., 45(1), 17-24.
[10].        Özdemir, M. Devres, O. (2000). Kinetics of color changes of hazelnuts during roasting. J. Food Eng., 44(1), 31-38.
[11].        Özdemir, M., Seyhan, F. G., Özdeş Bodurb, A. Onur Devres, Y. (2000). Effect of initial moisture content on the thin layer drying characteristics of hazelnuts during roasting. Drying Tech., 18(7), 1465-1479.
[12].        Perren, R. Escher, F. E. (1997). Investigations on the hot air roasting of nuts. Manufacturing Confectioner, 77, 123-127.
[13].        Moses, J., Norton, T., Alagusundaram, K. Tiwari, B. (2014). Novel drying techniques for the food industry. Food Eng. Rev., 6(3), 43-55.
[14].        Zhu, Y. Pan, Z. (2009). Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating. J. Food Eng., 90(4), 441-452.
[15].        Chandrasekara, N. Shahidi, F. (2011). Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J. Agric. Food. Chem., 59(9), 5006-5014.
[16].        Park, J.-H., Lee, J.-M., Cho, Y.-J., Kim, C.-T., Kim, C.-J., Nam, K.-C., et al. (2009). Effect of far-infrared heater on the physicochemical characteristics of green tea during processing. J. Food Biochem., 33(2), 149-162.
[17].        Sakai, N. Hanzawa, T. (1994). Applications and advances in far-infrared heating in Japan. Trends Food Sci. Technol., 5(11), 357-362.
[18].        Yang, J., Bingol, G., Pan, Z., Brandl, M. T., McHugh, T. H. Wang, H. (2010). Infrared heating for dry-roasting and pasteurization of almonds. J. Food Eng., 101(3), 273-280.
[19].        Hebbar, H. U., Vishwanathan, K. Ramesh, M. (2004). Development of combined infrared and hot air dryer for vegetables. J. Food Eng., 65(4), 557-563.
[20].        Megahed, M. (2001). Microwave roasting of peanuts: Effects on oil characteristics and composition. Mol. Nutr. Food Res., 45(4), 255-257.
[21].        Behera, S., Nagarajan, S. Rao, L. J. M. (2004). Microwave heating and conventional roasting of cumin seeds (Cuminum cyminum L.) and effect on chemical composition of volatiles. Food Chem., 87(1), 25-29.
[22].        Yoshida, H., Shigezaki, J., Takagi, S. Kajimoto, G. (1995). Variations in the composition of various acyl lipids, tocopherols and lignans in sesame seed oils roasted in a microwave oven. J. Sci. Food Agric., 68(4), 407-415.
[23].        Yoshida, H., Hirakawa, Y., Abe, S. Mizushina, Y. (2002). The content of tocopherols and oxidative quality of oils prepared from sunflower (Helianthus annuus L.) seeds roasted in a microwave oven. Eur. J. Lipid Sci. Technol., 104(2), 116-122.
[24].        Nebesny, E. Budryn, G. (2003). Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur. Food Res. Technol., 217(2), 157-163.
[25].        AOAC. (1996). Official methods of analysis of AOAC International. Gaithersburg: AOAC-International, 2.
[26].        Cruz, N., Capellas, M., Hernandez, M., Trujillo, A., Guamis, B. Ferragut, V. (2007). Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics. Food Res. Int., 40(6), 725-732.
[27].        Driscoll, R. Madamba, P. (1994). Modelling the browning kinetics of garlic. Food Aust., 46(2), 66-71.
[28].        LIU, Z. H. I. S. CHANG, S. A. M. K. C. (2007). Soymilk viscosity as influenced by heating methods and soybean varieties. J. Food Process. Preserv., 31(3), 320-333.
[29].        Saklar, S., Ungan, S. Katnas, S. (1999). Instrumental crispness and crunchiness of roasted hazelnuts and correlations with sensory assessment. J Food Sci., 64(6), 1015-1019.
[30].        Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J. Demirci, A. (2008). Infrared heating in food processing: an overview. Compr. Rev. Food Sci. Food Saf., 7(1), 2-13.
[31].        Ahmadian-Kouchaksaraei, Z., Varidi, M., Varidi, M. J. Pourazarang, H. (2014). Influence of processing conditions on the physicochemical and sensory properties of sesame milk: A novel nutritional beverage. LWT Food Sci. Technol., 57(1), 299-305.
[32].        Bonvehí, J. S. (1995). A chemical study of the protein fractions of Tarragona hazelnuts (Corylus avellana). Z. Lebensm Unters Forsch A, 201(4), 371-374.
[33].        Ju, Z., Hettiarachchy, N. Rath, N. (2001). Extraction, denaturation and hydrophobic properties of rice flour proteins. J Food Sci., 66(2), 229-232.
[34].        Gorinstein, S., Zemser, M. Paredes-López, O. (1996). Structural stability of globulins. J. Agric. Food. Chem., 44(1), 100-105.
[35].        Hinds, M., Beuchat, L. Chinnan, M. (1997). Effects of homogenization pressure and stabilizers on some physical characteristics of a beverage prepared from partially defatted, roasted peanuts. Plant Foods Hum. Nutr., 50(4), 269-277.
[36].        Hinds, M. J., Beuchat, L. R. Chinnan, M. S. (1997). Properties of a thermal‐processed beverage prepared from roasted partially defatted peanuts. Int. J. Food Sci. Technol., 32(3), 203-211.
[37].         Nelson, A., Steinberg, M. Wei, L. (1976). Illinois process for preparation of soymilk. J. Food Sci., 41(1), 57-61.
[38].        Mepba, H. D., Achinewhu, S. C. Pillay, M. (2006). Stabilised cocosoy beverage: physicochemical and sensory properties. J. Sci. Food Agric., 86(12), 1839-1846.
[39].        Rubico, S., Resurreccion, A. Beuchat, L. (1988). Comparison of sensory properties and headspace volatiles of a peanut beverage processed at different temperature and time conditions. J. Food Sci., 53(1), 176-180.
[40].        Durmaz, G. Gökmen, V. (2010). Impacts of roasting oily seeds and nuts on their extracted oils. Lipid Tech., 22(8), 179-182.
[41].        Husain, S. R., Terao, J. Matsushita, S. (1986). Effect of browning reaction products of phospholipids on autoxidation of methyl linoleate. J. Am. Oil Chem. Soc., 63(11), 1457-1460.
[42].        Boge, E. L., Boylston, T. D. Wilson, L. A. (2009). Effect of cultivar and roasting method on composition of roasted soybeans. J. Sci. Food Agric., 89(5), 821-826.
[43].        Lee, C. M. (2004). Changes in sensory and physicochemical properties of roasted peanuts in intermediate moisture foods. Ph.D thesis, University of Georgia.
[44].        Lawal, O., Adebowale, K., Ogunsanwo, B., Sosanwo, O. Bankole, S. (2005). On the functional properties of globulin and albumin protein fractions and flours of African locust bean (Parkia biglobossa). Food chem., 92(4), 681-691.
[45].        MacFie, H. J. Hedderley, D. (1993). Current practice in relating sensory perception to instrumental measurements. Food Qual. Prefer., 4(1), 41-49.
[46].        Grosso, N. Resurreccion, A. (2002). Predicting consumer acceptance ratings of cracker‐coated and roasted peanuts from descriptive analysis and hexanal measurements. J Food Sci., 67(4), 1530-1537.
[47].         Lindinger, C., Labbe, D., Pollien, P., Rytz, A., Juillerat, M. A., Yeretzian, C., Blank, I. (2008). When machine tastes coffee: Instrumental approach to predict the sensory profile of espresso coffee. Anal. Chem., 80(5), 1574-1581.