Study of the functional and antimicrobial properties of combined cassava starch and bovine gelatin films reinforced with nano titanium dioxide

Document Type : Research Article

Authors

1 Assistant Professor of Chemical Engineering, University of Mohaghegh Ardabili

2 Food expert of food and drug administration of ardabil province

3 Associate Professor of Food Engineering, Islamic Azad University of Damghan

Abstract

One of the greatest advances in food packaging is associated with nanotechnology. In this research, edible films based on the combined cassava starch and bovine gelatin containing nanoparticles of titanium dioxide were made. TiO2 at concentrations of 0, 1, 3, and 5% using casting method were prepared and physicochemical properties, mechanical and transmission of water vapor and oxygen were evaluated. Incorporation of nano titanium dioxide, increased tensile strength and Young's modulus, and decreased elongation at break. Physicochemical properties (water absorption and solubility) and barrier properties (permeability to water vapor and oxygen) were increased significantly by increasing the amount of nanoparticles (p< 0.05). Combined cassava starch and gelatin edible films supported by nano titanium dioxide revealed good antimicrobial properties against E. coli. This research shows that the nanoparticles of titanium dioxide improve the functional and antimicrobial properties of the films and could be used as an active packaging for food industries.

Keywords

Main Subjects


[1] Heydari, A., I. Alemzadeh, and M. Vossoughi. (2013). Influence of glycerol and clay contents on biodegradability of corn starch nanocomposites. Int. J. Eng., Trans. B: App., 27203-214.
 [2]Gonçalves de Moura, I., A. Vasconcelos de Sá, A.S. Lemos Machado Abreu, and A.V. Alves Machado, Bioplastics from agro-wastes for food packaging applications. 2017, Academic Press. 223-263.
 [3]Battisti, R., N. Fronza, Á. Vargas Júnior, S.M.d. Silveira, M.S.P. Damas, and M.G.N. Quadri. (2017). Gelatin-coated paper with antimicrobial and antioxidant effect for beef packaging. Food Pack. Shelf Life, 11, 115-124.
 [4]Nafchi, A.M., A.K. Alias, S. Mahmud, and M. Robal. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J. Food Eng., 113(4), 511-519.
 [5]Nouri, L. and A.M. Nafchi. (2014). Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int. J. Biol. Macromol., 66, 254-259.
 [6]Nafchi, A.M., M. Moradpour, M. Saeidi, and A.K. Alias. (2014). Effects of nanorod-rich ZnO on rheological, sorption isotherm, and physicochemical properties of bovine gelatin films. LWT-Food Sci. Tech., 58(1), 142-149.
 [7]Heydari, A., I. Alemzadeh, and M. Vossoughi. (2013). Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mat. Des., 50954-961.
 [8]Shaili, T., M.N. Abdorreza, and N. Fariborz. (2015). Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydr. Polym., 134, 726-731.
 [9]Nassiri, R. and A. MohammadiNafchi. (2013). Antimicrobial and barrier properties of bovine gelatin films reinforced by nano TiO2. J. Chem. Health Risks, 3(3), 12-28.
 [10]Marvizadeh, M.M., A.M. Nafchi, and M. Jokar. (2014). Improved physicochemical properties of tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. J. Chem. Health Risks, 4(4), 25-31.
 [11]Skocaj, M., M. Filipic, J. Petkovic, and S. Novak. (2011). Titanium dioxide in our everyday life; is it safe?. Radiology Oncology, 45(4), 227-247.
 [12]Weir, A., P. Westerhoff, L. Fabricius, and N. von Goetz. (2012). Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Tech., 46(4), 2242-2250.
 [13]Almasi, H., B. Ghanbarzadeh, and N.A. Pezeshki. (2009). Improving the physical properties of starch and starch–carboxymethyl cellulose composite biodegradable films. Iranian J. Food Sci. Tech., 6(3), 1-11.
 [14]ASTM. (2010). Standard test method for tensile properties of thin plastic sheeting, D882, Annual Book of ASTM standards, American Society for Testing & Materials, Philadelphia, PA, USA.
 [15]ASTM. (2005). Standard test methods for water vapor transmission of materials, E96/E96M-05. Annual book of ASTM standards, American Society for Testing & Materials, Philadelphia, PA, USA.  
 [16]Maizura, M., A. Fazilah, M.H. Norziah, and A.A. Karim. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. J. Food Sci., 72(6), 324-330.
 [17]Kiatkamjornwong, S., W. Chomsaksakul, and M. Sonsuk. (2000). Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Phys. Chem., 59(4), 413-427.
[18] ASTM. (2005). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor, D3985. Annual book of ASTM standards, American Society for Testing & Materials, Philadelphia, PA, USA. 
 [19]Lin, W., Y. Xu, C.-C. Huang, Y. Ma, K.B. Shannon, D.-R. Chen, and Y.-W. Huang. (2009). Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanoparticle Res., 11(1), 25-39.
 [20]Maizura, M., A. Fazilah, M.H. Norziah, and A.A. Karim. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil. J Food Sci., 72(6), 324-330.
 [21]Yu, J., J. Yang, B. Liu, and X. Ma. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresour. Technol., 100(11), 2832-2841.
 [22]Tunc, S., H. Angellier, Y. Cahyana, P. Chalier, N. Gontard, and E. Gastaldi. (2007). Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J. Membr. Sci., 289(1–2), 159-168.
 [23]Hosseini, S.F., M. Rezaei, M. Zandi, and F.F. Ghavi. Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem., 136(3–4), 1490-1495.
 [24]Yu, D., R. Cai, and Z. Liu. (2004). Studies on the photodegradation of Rhodamine dyes on nanometer-sized zinc oxide. Spectrochim. Acta, Part A, 60(7), 1617-1624.
 [25]Thellen, C., C. Orroth, D. Froio, D. Ziegler, J. Lucciarini, R. Farrell, N.A. D'Souza, and J.A. Ratto. (2005). Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films. Polym., 46(25), 11716-11727.
 [26]Tang, J., Y. Wang, H. Liu, and L.A. Belfiore. (2004). Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polym., 45(7), 2081-2091.
 [27]de Moura, M.R., L.H.C. Mattoso, and V. Zucolotto. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng., 109(3), 520-524.
 [28]Sothornvit, R. and N. Pitak. (2007). Oxygen permeability and mechanical properties of banana films. Food Res. Int., 40(3), 365-370.
 [29]Zeppa, C., F. Gouanvé, and E. Espuche. (2009). Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: Thermal, water-sorption, and oxygen-barrier properties. J. App. Polym. Sci., 112(4), 2044-2056.
 [30]Li, J.H., R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, and J. Ding. (2009). Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat., 64(4), 504-509.