[1] Kagami, S., Sugimura, S., Fujishima, N., Matsuda, K., Kometani, T., Matsumura, Y. (2003). Oxidative stability, structure, and physical characteristics of microcapsules formed by spraying drying of fish oil with protein and dextrin wall materials. J. Food Sci., 68, 2248–2255.
[2] Cho, Y. H., Shim, H. K., Park, J. (2003). Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross-linked proteins. J. Food Sci., 68, 2717–2723.
[3] Sioen, I. A., Pynaert, I., Matthys, C., De Backer, G., Van Camp, J., De Henauw, S. (2006). Dietary intakes and food sources of fatty acids for Belgian women, focused on n-6 and n-3 polyunsaturated fatty acids. Lipids, 41, 415–422.
[4] Poyato, C., Ansorena, D., Berasategi, I., Navarro-Blasco, I., Astiasaraan, I. (2014). Optimization of a gelled emulsion intended to supply omega-3 fatty acids into meat products by means of response surface methodology. Meat Sci, 98(4), 615–621.
[5] Jacobsen, C. (1999). Sensory impact of lipid oxidation in complex food systems. Lipid / Fett., 101, 484–492.
[6] Jiménez-Martín, E., Pérez-Palacios, T., Carrascal, J.R. Rojas, T.A. (2015). Enrichment of chicken nuggets with microencapsulated Omega-3 fish oil: effect of frozen storage time on oxidative stability and sensory quality. Food Bioproc. Tech., DOI 10.1007/s11947-015-1621-x.
[7] Eratte, D., Wang, B., Dowling, K., Barrow C. J., Adhikari, B.P. (2014). Complex coacervation with whey protein isolate & gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Function, 5, 2743- 2750.
[8] Drusch, S., Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: localisation, determination and impact on oxidation stability. Food Chem., 109, 17–24.
[9] Shaw, L. A., McClements, D. J., Decker, E. A. (2007). Spray-dried multilayered emulsions as a delivery method for omega-3 fatty acids into food systems. J. Agric. Food Chem., 55(8), 3112–3119.
[10] Pourashouri, P., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., Aubourg, S. 2014. Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food Bioproc. Tech, 51, 348–355.
[11]Shi, L.E., Li, Z.H., Zhang, Z.L., Zhang, T.T., Yu, W.M., Zhou, M.L., Tang, Z.X. (2013). Encapsulation of
Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure.
LWT - Food Sci. Technol., 54 (1), 147–151.
[12] Galazka, V.B., Dickinson, E., Ledward, D.A. (1999). Emulsifying behavior of globulin Vicia faba in mixtures with sulphated polysaccharides: Comparison of thermal and high-pressure treatments. Food Hydrocolloids, 13, 425–435.
[13] Lobo, L. (2002). Coalescence during emulsification; 3. Effect of gelatin on rupture and coalescence. J. Colloid Interface Sci., 254,165–174.
[14] Karim, A.A., Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll., 23, 563–576.
[15] Garcia, E., Gutierrez, S., Nolasco, H., Carreon, L., Arjona, O. (2006) Lipid composition of shark liver oil: effects of emulsifying and microencapsulation processes. Eur Food Res Technol., 222, 697–701.
[16] Aghbashlo, M., Mobli, H., Madadlou, A., Rafiee, S. (2012). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food Bioproc. Technol., doi:10.1007/s11947-012-0796-7.
[17] Drusch, S., Serfert, Y., Berger, A., Shaikh, M.Q., Rätzke, K., Zaporojtchenko, V., Schwarz, K. (2012). New insights into the microencapsulation properties of sodium caseinate and hydrolyzed casein. Food Hydrocolloids, 27, 332-338.
[18] Lim, H.K., Tan, C.P., Bakar, J., Ng, S.P. (2011). Effects of different wall materials on the physicochemical properties and oxidative stability of spray-dried microencapsulated red-fleshed pitaya (Hylocereus polyrhizus) Seed Oil. Food Bioproc. Technol., DOI 10.1007/s11947-011-0555-1.
[19] Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R., Pedroza-Islas, R., Hermida, L. G. (2013).
Microencapsulation of linseed oil by spray drying for functional food application.
Food Res. Int., 52(2), 473-482.
[20] Cortés-Rojas, D. F., Souza, C. R. F., Oliveira, W. P. (2014). Encapsulation of eugenol rich clove extract in solid lipid carriers. J. Food Eng., 127:34–42.
[21] Piacentini, E., Giorno, L., Dragosavac, M. M., Vladisavljević, G. T., and Holdich, R.G. (2013).
Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification.
Food Res. Int., 53 (1), 362–372.
[22] Versic, R. J. (2003). Coacervation for flavor encapsulation. J. Microencapsul., 14,126-131.
[23] Dong, Z. J., Touré, A., Jia, C. S., Zhang, X. M., Xu, S. Y. (2007). Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation. J. Microencapsul., 24, 634-46.
[24] Dong, Z. J., Xia, S. Q., Hua, S., Hayat, K., Zhang, X. M., Xu, S. Y. (2008). Optimization of cross-linking parameters during production of transglutaminase-hardened spherical multinuclear microcapsules by complex coacervation. Colloids Surf. B., 63(1), 41-47.
[25] Drusch, S., Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: localisation, determination and impact on oxidation stability. Food Chem., 109, 17–24.
[26] Alvim, I.D., Grosso, C.R.F. (2010). Microparticles obtained by complex coacervation: inuence of the type of reticulation and the drying process on the release of the core material. Ciênc. Tecnol. Aliment Campinas, 30(4): 1069-1076.
[27] Carneiro, H.C.F., Tonon, R.V., Grosso, C.R.F., Hubinger, M.D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng., 115, 443–45.
[28] Gan, C.Y., Cheng, L.H., Easa, A.M. (2008). Evaluation of microbial transglutaminase ribose crosslinked soy protein isolate-based microcapsules containing fish oil. Innov. Food Sci. Emerg. Technol., 9(4), 563–9.
[29] Kirk, R. S., Sawyer, R. (1991). Pearson’s Composition and Analysis of Foods (9th ed.). London: Longman Scientific Technical. (pp. 28–31).
[30] O’Connor, C. J., Lal, S. N. D., Eyres, L. (2007). Handbook of Australasian edible oils. Auckland, New Zealand: Oils and Fats Specialist Group of NZIC.
[31] Pourashouri, p., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., Aubourg, S. (2014). Oxidative stability of spray-dried microencapsulated fish oils with different wall materials. J. Aquat. Food Prod. T, 23,567–578.
[32] Bao, S. S., Hu, X. C., Zhang, K., Xu, X. K., Zhang, H. M., Huang. (2011). Characterization Of Spray-Dried Microalgal Oil Encapsulated In Cross-Linked Sodium Caseinate Matrix Induced By Microbial Transglutaminase. J. Food Sci., 76(1), 112-118.
[33] Yang, Z., Peng, Z., Li, J., Li, S., Kong, L., Li, P. (2014). Development and evaluation of novel flavour microcapsules containing vanilla oil using complex.
J. Food Process. Preserv.,
33(2):255–270.
[34] Santos, M. G., Bozza, F., Thomazini,T., M. Favaro-Trindade. C. S. (2015). Microencapsulation of xylitol by double emulsion followed by complex Coacervation. Food Chem., 171, 32–39.
[35] Alvim, I. D., Grosso, C. R. F. (2010). Microparticles obtained by complex coacervation: Influence of the type of reticulation and the drying process on the release of the core material. Ciênc. Tecnol. Aliment., 30, 1069–1076.
[36] Matalanis, A., Jones, O. G., McClements, D. J. (2011). Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll., 25, 1865–1880.
[37] Lakkis, J. M. (2007). Frontmatter, in Encapsulation and Controlled Release Technologies in Food Systems, Blackwell Publishing, Ames, Iowa, USA. doi: 10.1002/9780470277881.fmatter
[38] Lee, S.J., Rosenberg, M. (2000). Whey protein-based microcapsules prepared by double emulsification and heat gelation. Food Sci. Technol., 33(2), 80-88.
[39] Liu, S. N., Low, H., Nickerson, M. T. (2010). Entrapment of flaxseed oil within gelatin-gum arabic capsules. J. Am. Oil Chem. Soc., 87, 809-815.
[40] Moreau, D. L., Rosenberg, M. (1998). Porosity of whey protein-based microcapsules containing anhydrous milkfat measured by gas displacement phenometry. J. Food Sci., 63, 819–23.
[41] Sun-Waterhouse, D., Zhou, J., Miskelly, G. M., Wibisono, R., Wadhwa, S. S. (2011). Stability of encapsulated olive oil in the presence of caffeic acid. Food Chem., 126(3), 1049–1056.
[42] Drusch., S. (2007). Sugar beet pectin: a novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocoll., 21, 1223–1228.
[43] Baik, M., Suhendro, E., Nawar, W., Mcclements, J., Decker, E., Chinachoti, D. (2004). Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. J. Am. Oil Chem. Soc., 81, 355–360.
[44] Drusch, S., Serfert, Y., Heuvel, A. V. D., Schwarz, K. (2006). Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Res. Int., 39, 807–815.
[45] Peng, Z., Li, J., Guan, Y., Zhao, G. (2013). Effect of carriers on physicochemical properties, antioxidant activities and biological components of spray-dried purple sweet potato flours. LWT – Food Sci. Technol. 51, 348–355.
[46] Imagi, J., Kako, N., Nakanishi, K., Matsuno, R. (1990). Entrapment of Liquid Lipids in Matrixes of Saccharides. J. Food Eng., 12, 207-222.
[47] Liu, S. N., Low, H., Nickerson, M. T. (2010). Entrapment of flaxseed oil within gelatin-gum arabic capsules. J. Am. Oil Chem. Soc., 87, 809-815.