Evaluation of physicomechanical, antimicrobial and microstructural properties of chitosan bioactive films containing Eucalyptus globulus essential oil

Document Type : Research Article

Authors

1 Graduate Master of Food Science and Technology., Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Associate Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Assistant Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Antimicrobial packaging is a type of active packaging that provides the continuous migration of antimicrobial agents to the surface of food products. In this study, chitosan bioactive films containing Eucalyptus globulus essential oil (EGOs) (at concentrations of 0.5, 1 and 1.5 % v/v) were produced by casting method and their antibacterial, physical, mechanical and microstructural properties were examined. The results of disc diffusion test revealed that chitosan film containing 1 and 1.5 % essential oil was able to reduce the density of bacteria. The addition of EGO into chitosan based films reduced the moisture content, solubility in water, water vapor permeability and tensile strength of bioactive films to 41.28 %, 39.08 %, 25.36 % and 27.3 % respectively, while increased elongation at break (65.61 %) as well as its thickness. It seems that physical and mechanical properties of chitosan films containing EGO is related to the formation of bonds between the essential oil compounds and functional groups of chitosan, which consequently improved the physical properties but decreased the mechanical properties. Also, the electron microscopy images confirmed the results obtained in this study. The results of this study indicated that these natural compounds have a great potential to be applied in active packaging materials due to their effective antimicrobial and physical properties.

Keywords

Main Subjects


[1] Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future., Trends Food sci Technol., 14(3), 71-78.
[2] Avila-Sosa, R., Gastélum-Franco, M. G., Camacho-Dávila, A., Torres-Muñoz, J. V., Nevárez-Moorillón, G. V. (2010). Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. J. Food Bio. Technol., 3(3), 434-440.
[3] Davidson, P. M., Taylor, T. M., Schmidt, S. E. (2013). Chemical preservatives and natural antimicrobial compounds. In Food microbial., pp. 765-801.
[4] Rhim, J. W., Ng, P. K. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev. Food Sci. Nut., 47(4), 411-433.
[5] Peter, M. G. (1995). Applications and environmental aspects of chitin and chitosan. J. Mac Sci., 32(4), 629-640.
[6] Zivanovic, S., Davis, R. H., Golden, D. A. (2014). Chitosan as an antimicrobial in food products. Handbook of natural antimicrobials for food safety and quality, 153.
[7] Shahidi, F., Arachchi, J. K. V., Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends Food sci technol., 10(2), 37-51.
[8] Ali, A., Noh, N. M., Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food pack and shelf life., 3, 56-61.
[9] Kristo, E., Koutsoumanis, K. P., Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hyd., 22(3), 373-386.
[10] Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: a review. Food Eng Rev., 3(1), 1-16.
[11] Preedy, V. R. (Ed.). (2015). Essential Oils in Food Preservation, Flavor and Safety. Academic Press.UK. 930P.
[12] Keay, R.W.J. (1989). Tree of Nigeria. Oxford Science Publications, Oxford, UK. Pg 78. KFDA. (2011). Korea food additive code. Korea Food and Drug Administration (KFDA). Available at  http://www.mfds.go.kr/fa/ebook/egongjeon_intro.html;http://fa.kfda.go.kr/standard/egongjeon_standard_view.jsp?SerialNo¼130&GoCa¼2&currPage¼1&stext¼ chitosan Accessed on 08.01.13.
 [13] صمصام شریعت،ه.؛ معطر، ف. (1370) گیاهان و داروهای طبیعی، انتشارات موسسه مشعل اصفهان. 432 ص.
[14] Ayepola, O. O., Adeniyi, B. A. (2008). The antibacterial activity of leaf extracts of Eucalyptus camaldulensis (Myrtaceae). J. Applied Sci Res., 4(11), 1410-1413.
[15] Elaissi, A., Rouis, Z., Salem, N. A. B., Mabrouk, S., ben Salem, Y., Salah, K. B. H., Khouja, M. L. (2012). Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC complementary and alternative medicine., 12(1), 1.
[16] Mohammed, G., Abe Ayotunde, S., Bashir, I., Aji, B. M., Aliyu, S., Hauwa, M. (2012). Comparative evaluation of ethno-medicinal use of two species of Eucalyptus plant as an antimicrobial agent. Int. J. Sci Technol., 2(8), 548-550.
[17] Melo, M. S., Guimarães, A. G., Santana, M. F., Siqueira, R. S., De Lima, A. D. C. B., Dias, A. S., Almeida, J. R. (2011). Anti-inflammatory and redox-protective activities of citronellal. Biotech Res., 44(4), 363-368.
[18] Becerril, R., Gómez-Lus, R., Goni, P., López, P., Nerín, C. (2007). Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Analytical and bioanalytical chem., 388(5-6), 1003-1011.
[19] Fernández-Pan, I., Maté, J. I., Gardrat, C., Coma, V. (2015). Effect of chitosan molecular weight on the antimicrobial activity and release rate of carvacrol-enriched films. Food Hyd., 51, 60-68.
[20] Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem., 122(1), 161-166.
[21] Gómez-Estaca, J., de Lacey, A. L., López-Caballero, M. E., Gómez-Guillén, M. C., Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol., 27(7), 889-896.
[22] Sánchez-González, L., González-Martínez, C., Chiralt, A., Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. J. Food Eng., 98(4), 443-452.
[23] Zinoviadou, K. G., Koutsoumanis, K. P., Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci., 82(3), 338-345.
[24] Pranoto, Y., Rakshit, S. K., Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Sci Tech., 38(8), 859-865.
[25] Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat sci., 62(3), 373-380.
[26] Muriel-Galet, V., Cerisuelo, J. P., López-Carballo, G., Lara, M., Gavara, R., Hernández-Muñoz, P. (2012). Development of antimicrobial films for microbiological control of packaged salad. Int. j.  Food microbiol., 157(2), 195-201.
[27] Hafsa, J., ali Smach, M., Khedher, M. R. B., Charfeddine, B., Limem, K., Majdoub, H., & Rouatbi, S. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT- Food Sci Technol., 68, 356-364.
[28] ASTM (2003). Annual book of ASTM standards. Pennsylvania: American Society for Testing and Materials.
[29] Salehi, F., & Kashaninejad, M. (2014). Effect of different drying methods on rheological and textural properties of Balangu seed gum. Dry Technol., 32(6), 720-727.
[30] Park, S. I., Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J. Agric. Food Chem., 52(7), 1933-1939.
[31] ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882 Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials.
[32]  حسینی، س.؛ رضوی، س.؛ موسوی، س. (1388) بررسی خواص فیزیکی، مکانیکی، ضد­باکتریایی و ریز ساختاری فیلم­های تولید شده از کیتوزان محتوی اسانس­های آویشن و دارچین، مجله الکترونیک فراوری و نگه‌داری مواد غذایی. شماره 2، ص 68-47.
[33] Shan, B., Cai, Y. Z., Brooks, J. D., Corke, H. (2007). Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J.Agric. Food Chem., 55(14), 5484-5490.
 [34]کشیری، م.؛ مقصودلو، ی.؛ خمیری، م.؛ بهروز، ر. (1393) ارزیابی خواص ضدباکتریایی فیلم زیست فعال زئین حاوی اسانس آویشن شیرازی، فصلنامه علوم و صنایع غذایی. شماره 50، ص 206-195.
[35] Devlieghere, F., Vermeulen, A., Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 21(6), 703-714.
[36] Liu, H., Du, Y., Yang, J., Zhu, H. (2004). Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohyd polym., 55(3), 291-297.
[37] Holappa, J., Hjálmarsdóttir, M., Másson, M., Rúnarsson, Ö., Asplund, T., Soininen, P., . Järvinen, T. (2006). Antimicrobial activity of chitosan N-betainates. Carbohyd polym., 65(1), 114-118.
[38] Rao, M. A. (1977). Reology of liquid foods-A review1. J. Texture Studies., 8(2), 135-168.
[39] McClements, D. J. (2015). Food emulsions: principles, practices, and techniques. CRC press., 352P.
[40] Peng, Y., Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hyd., 36, 287-293.
[41] Hosseini, M. H., Razavi, S. H., Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. J. Food Process Preserv., 33(6), 727-743.
[42] Ma, Q., Zhang, Y., Zhong, Q. (2016). Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT-Food Sci Technol., 65, 173-179.
[43] Mathew, S., Brahmakumar, M., Abraham, T. E. (2006). Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Bio., 82(2), 176-187.
[44] Rojas-Graü, M. A., Raybaudi-Massilia, R. M., Soliva-Fortuny, R. C., Avena-Bustillos, R. J., McHugh, T. H., Martín-Belloso, O. (2007). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Tec.,45(2), 254-264.
 [45] Zivanovic, S., Chi, S., Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. J.  Food Sci., 70(1), M45-M51.
[46] Vargas, M., Albors, A., Chiralt, A., González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hyd., 23(2), 536-547.
[47] Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hyd., 23(8), 2102-2109.
[48] Pérez-Gago, M. B., Krochta, J. M. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. J. Agr Food Chem., 49(2), 996-1002.
[49] Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hyd., 19(1), 53-61.
 [50] Trezza, T. A., Krochta, J. M. (2000). The gloss of edible coatings as affected by surfactants, lipids, relative humidity, and time. J. Food Sci., 65(4), 658-662.
 [51] Atarés, L., Bonilla, J., Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J. Food Eng., 100(4), 678-687.