[1] Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future., Trends Food sci Technol., 14(3), 71-78.
[2] Avila-Sosa, R., Gastélum-Franco, M. G., Camacho-Dávila, A., Torres-Muñoz, J. V., Nevárez-Moorillón, G. V. (2010). Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. J. Food Bio. Technol., 3(3), 434-440.
[3] Davidson, P. M., Taylor, T. M., Schmidt, S. E. (2013). Chemical preservatives and natural antimicrobial compounds. In Food microbial., pp. 765-801.
[4] Rhim, J. W., Ng, P. K. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev. Food Sci. Nut., 47(4), 411-433.
[5] Peter, M. G. (1995). Applications and environmental aspects of chitin and chitosan. J. Mac Sci., 32(4), 629-640.
[6] Zivanovic, S., Davis, R. H., Golden, D. A. (2014). Chitosan as an antimicrobial in food products. Handbook of natural antimicrobials for food safety and quality, 153.
[7] Shahidi, F., Arachchi, J. K. V., Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends Food sci technol., 10(2), 37-51.
[8] Ali, A., Noh, N. M., Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food pack and shelf life., 3, 56-61.
[9] Kristo, E., Koutsoumanis, K. P., Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hyd., 22(3), 373-386.
[10] Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: a review. Food Eng Rev., 3(1), 1-16.
[11] Preedy, V. R. (Ed.). (2015). Essential Oils in Food Preservation, Flavor and Safety. Academic Press.UK. 930P.
[12] Keay, R.W.J. (1989). Tree of Nigeria. Oxford Science Publications, Oxford, UK. Pg 78. KFDA. (2011). Korea food additive code. Korea Food and Drug Administration (KFDA). Available at http://www.mfds.go.kr/fa/ebook/egongjeon_intro.html;http://fa.kfda.go.kr/standard/egongjeon_standard_view.jsp?SerialNo¼130&GoCa¼2&currPage¼1&stext¼ chitosan Accessed on 08.01.13.
[13] صمصام شریعت،ه.؛ معطر، ف. (1370) گیاهان و داروهای طبیعی، انتشارات موسسه مشعل اصفهان. 432 ص.
[14] Ayepola, O. O., Adeniyi, B. A. (2008). The antibacterial activity of leaf extracts of Eucalyptus camaldulensis (Myrtaceae). J. Applied Sci Res., 4(11), 1410-1413.
[15] Elaissi, A., Rouis, Z., Salem, N. A. B., Mabrouk, S., ben Salem, Y., Salah, K. B. H., Khouja, M. L. (2012). Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC complementary and alternative medicine., 12(1), 1.
[16] Mohammed, G., Abe Ayotunde, S., Bashir, I., Aji, B. M., Aliyu, S., Hauwa, M. (2012). Comparative evaluation of ethno-medicinal use of two species of Eucalyptus plant as an antimicrobial agent. Int. J. Sci Technol., 2(8), 548-550.
[17] Melo, M. S., Guimarães, A. G., Santana, M. F., Siqueira, R. S., De Lima, A. D. C. B., Dias, A. S., Almeida, J. R. (2011). Anti-inflammatory and redox-protective activities of citronellal. Biotech Res., 44(4), 363-368.
[18] Becerril, R., Gómez-Lus, R., Goni, P., López, P., Nerín, C. (2007). Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Analytical and bioanalytical chem., 388(5-6), 1003-1011.
[19] Fernández-Pan, I., Maté, J. I., Gardrat, C., Coma, V. (2015). Effect of chitosan molecular weight on the antimicrobial activity and release rate of carvacrol-enriched films. Food Hyd., 51, 60-68.
[20] Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem., 122(1), 161-166.
[21] Gómez-Estaca, J., de Lacey, A. L., López-Caballero, M. E., Gómez-Guillén, M. C., Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol., 27(7), 889-896.
[22] Sánchez-González, L., González-Martínez, C., Chiralt, A., Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. J. Food Eng., 98(4), 443-452.
[23] Zinoviadou, K. G., Koutsoumanis, K. P., Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci., 82(3), 338-345.
[24] Pranoto, Y., Rakshit, S. K., Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Sci Tech., 38(8), 859-865.
[25] Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat sci., 62(3), 373-380.
[26] Muriel-Galet, V., Cerisuelo, J. P., López-Carballo, G., Lara, M., Gavara, R., Hernández-Muñoz, P. (2012). Development of antimicrobial films for microbiological control of packaged salad. Int. j. Food microbiol., 157(2), 195-201.
[27] Hafsa, J., ali Smach, M., Khedher, M. R. B., Charfeddine, B., Limem, K., Majdoub, H., & Rouatbi, S. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT- Food Sci Technol., 68, 356-364.
[28] ASTM (2003). Annual book of ASTM standards. Pennsylvania: American Society for Testing and Materials.
[29] Salehi, F., & Kashaninejad, M. (2014). Effect of different drying methods on rheological and textural properties of Balangu seed gum. Dry Technol., 32(6), 720-727.
[30] Park, S. I., Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J. Agric. Food Chem., 52(7), 1933-1939.
[31] ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882 Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials.
[32] حسینی، س.؛ رضوی، س.؛ موسوی، س. (1388) بررسی خواص فیزیکی، مکانیکی، ضدباکتریایی و ریز ساختاری فیلمهای تولید شده از کیتوزان محتوی اسانسهای آویشن و دارچین، مجله الکترونیک فراوری و نگهداری مواد غذایی. شماره 2، ص 68-47.
[33] Shan, B., Cai, Y. Z., Brooks, J. D., Corke, H. (2007). Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J.Agric. Food Chem., 55(14), 5484-5490.
[34]کشیری، م.؛ مقصودلو، ی.؛ خمیری، م.؛ بهروز، ر. (1393) ارزیابی خواص ضدباکتریایی فیلم زیست فعال زئین حاوی اسانس آویشن شیرازی، فصلنامه علوم و صنایع غذایی. شماره 50، ص 206-195.
[35] Devlieghere, F., Vermeulen, A., Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 21(6), 703-714.
[36] Liu, H., Du, Y., Yang, J., Zhu, H. (2004). Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohyd polym., 55(3), 291-297.
[37] Holappa, J., Hjálmarsdóttir, M., Másson, M., Rúnarsson, Ö., Asplund, T., Soininen, P., . Järvinen, T. (2006). Antimicrobial activity of chitosan N-betainates. Carbohyd polym., 65(1), 114-118.
[38] Rao, M. A. (1977). Reology of liquid foods-A review1. J. Texture Studies., 8(2), 135-168.
[39] McClements, D. J. (2015). Food emulsions: principles, practices, and techniques. CRC press., 352P.
[40] Peng, Y., Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hyd., 36, 287-293.
[41] Hosseini, M. H., Razavi, S. H., Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. J. Food Process Preserv., 33(6), 727-743.
[42] Ma, Q., Zhang, Y., Zhong, Q. (2016). Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT-Food Sci Technol., 65, 173-179.
[43] Mathew, S., Brahmakumar, M., Abraham, T. E. (2006). Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Bio., 82(2), 176-187.
[44] Rojas-Graü, M. A., Raybaudi-Massilia, R. M., Soliva-Fortuny, R. C., Avena-Bustillos, R. J., McHugh, T. H., Martín-Belloso, O. (2007). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Tec.,45(2), 254-264.
[45] Zivanovic, S., Chi, S., Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. J. Food Sci., 70(1), M45-M51.
[46] Vargas, M., Albors, A., Chiralt, A., González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hyd., 23(2), 536-547.
[47] Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hyd., 23(8), 2102-2109.
[48] Pérez-Gago, M. B., Krochta, J. M. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. J. Agr Food Chem., 49(2), 996-1002.
[49] Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hyd., 19(1), 53-61.
[50] Trezza, T. A., Krochta, J. M. (2000). The gloss of edible coatings as affected by surfactants, lipids, relative humidity, and time. J. Food Sci., 65(4), 658-662.
[51] Atarés, L., Bonilla, J., Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J. Food Eng., 100(4), 678-687.