The influence of alone and starter culture combinations Saccharomyces cerevisiae (PTCC 5052) وLactobacillus Plantarum(PTCC1058), fermentation time and temperature on phytic acid content of Wheat bran

Document Type : Research Article

Authors

1 M.Sc. Student, Food Science and Technology, Islamic Azad University, Quchan, Quchan, Khorasan Razavi, Iran

2 Assistant Professor, Food Science, Faculty of Agriculture, University of Zabol, Zabol, Sistan and Baluchestan, Iran

3 Assistant Professor, Department of Food Science and Technology, Islamic Azad University, Quchan, Quchan, Khorasan Razavi, Iran

Abstract

Wheat bran with high fiber & mineral has beneficial nutritional properties, that via the presence of anti nutritional compound called phytic acid has limited application. In this study, the effects of three different starter cultures prepared from S. cerevisiae PTCC 5052 and L. Plantarum PTCC 1058, temperature (25, 30 and 35◦C) and fermentation time (0, 2, 4, 6 and 8 hour) on the level of pH and acidity, also phytic acid concentration (%) in sterilized wheat bran was investigated. The results showed S. cerevisiae PTCC 5052, with more phytase activity, was more efficient than L. Plantarum PTCC 1058 in lowering the phytic acid concentration in the wheat bran. The lowest phytic acid concentration was observed in prepared sample when S. cerevisiae PTCC 5052 was used as starter culture and incubated at 30◦C for 8 h.

Keywords

Main Subjects


[1] Coda, R., Rizzello G., Curiel J.A., Poutanen K., Katina K. (2014). Effect of bioprocessing and particle size on the nutritional properties of wheat bran fractions. Innov Food Sci. Emerg.,  25, 19–27.
 [2] Manini, F., Poutanen, K., Brasca, M., Erba, D., Plumed-Ferrer, C. (2016). Characterization of lactic acid bacteria isolated from wheat bran sourdough. Lwt-Food Sci Technol., 66, 275-283.
[3] Schlemmer, U., Wenche Frlich, W.,  Prieto, R.M., Grases, F. (2009). Phytate in foods and significance for humans. Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res., 53, 330-375.
[4] Persson, H., Turk, M., Nyman, M., Sandberg, A.S. (1998). Binding of Cu2+, Zn2+, and Cd2+ to Inositol Tri-, Tetra-, Penta-, and Hexakisphosphate. J. Agr. Food Chem., 46, 3194-3200.
[5] Reddy, N.R,  Sathe, S.K. (2002). Food Phytates, 1th ed., CRC press, New York, pp 2-5.
[6] Nuobariene, L., Hansen, A. S., Arneborg, N. (2012). Isolation and identification of phytase-active yeasts from sourdoughs. Lwt-Food Sci Technol., 48, 190 -196.
[7] Hansen, A., Schieberle. P. (2005). Generation of aroma compounds during sourdough Fermentation. Trends Food Sci. Tech., 16, 85-94.
[8] Reale A., Konietzny U., Coppola R., Sorrentino E., Greiner. R. (2007). The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J. Agr. Food Chem., 55, 2993-2997.
[9] Biswas, S.,  Datta m., Ngachan, S. (2012). Mushromms: a manual for cultivation, 1th ed, PHI, New Delhi 2012, pp 94-95.
[10]  AACC ) 2000). Approved Methods of the American Association of Cereal Chemists. St.Paul, 9th Edition, Minnesota, USA. Method 44-19.
[11] AACC (2000). Approved Methods of the American Association of Cereal Chemists. St. Paul, 9th Edition, Minnesota, USA. Method 08-01
[12] AACC ( 2000). Approved Methods of the American Association of Cereal Chemists. St. Paul, 9th Edition, Minnesota, USA. Method 30-20
 [13] AOAC ( 2002). Official Methods of Analysis of AOAC International, Horwitz W. 17th Edition, Maryland, USA. Method 920.82
[14] Najafi, M. A., Rezaei, K., Safari, M. & Razavi, S. H. (2012). Use of Sourdough to Reduce Phytic Acid and Improve Zinc Bioavailability of a Traditional Flat Bread (Sangak) from Iran. Food Sci. Biotechnol., 21, 51-57.
[15] National Iranian standard, (1998)  Biscuit characteristics Number 37
[16] Katina, K., Marttila. M, Partanen, R., Forssell, P., Autio. K. (2006). Effects of sourdough and enzymes on staling of high-fibre wheat bread. Lwt-Food Sci. Technol., 39, 479–491.
[17] Febles, C. I., Arias, A., Hardisson, A., Rodrı´guez-Alvarez, C., Sierra, A. (2002) . Phytic Acid Level in Wheat Flours. J. Cereal Sci., 36 ,19–23.
[18] Zotta, T., Ricciardi, A., Parente, E. (2007). Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. Int. J. Food Microbiol.,  115, 165–172.
[19] Edema, M. O., Sanni, A. I. (2008). Functional properties of selected starter cultures for sour maize bread. Food Microbiol.,  25, 616–625.
 [20] Plessas, S., Fisher, A., Koureta, K., Psarianos, C., Nigam, P., Koutinas, A.A., (2008). Application of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and L. helveticus for sourdough bread making. Food Chem., 106,  985–990.
[21] Hӓggman, M., Salovaara, H. (2008). Effect of fermentation rate on endogenous leavening of Candida milleri in sour rye dough. Food Res. Int., 41,  266–273.
]22 [Kennes, C., Veiga, M. C., Dubourguier, H. C., Touzel, J., Albanganac, P. G., Navaeau, H., Nyns, E. J., (1991). Trophic Relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and Their Metabolism of Glucose and Citrate. Appl. Environ. Microb., 4, 1046-1051.
 [23] Servi, S., özkaya, H., Colakoglu, A.S., (2008). Dephytinization of wheat bran by fermentation with bakers’ yeast, incubation with barley malt flour and autoclaving at different pH levels. J. Cereal Sci., 48, 471-476.
[24] Sandberg, A. S., (2002). Influence of Processing Technologies on Phytate and Its Removal. In:Reddy, N.R., Sathe, S.K. (Eds.), Food Phytates. CRC Press LLC, Boca Raton, FL, pp. 5-9.
[25] Lioger, L., Leenhardt, F., Demigne, C., Remesy, C. (2007). Sourdough fermentation of wheat fractions rich in fibres  before their use in processed food. J. Sci. Food Agr., 87, 1368–1373.
[26] Dhankher, N., Chauhan, B.M. (1987). Effect of temperature and fermentation time on phytic acid and polyphenol content of Rabadi – A fermented pearl millet food. J. Food Sci., 52, 828-829.
[27] Harland, H., Frølich, W., (1989). Effects of phytase from three yeasts on phytase reduction in Norwegian whole wheat flour. Cereal Chem., 66, 357-358.
[28] Sandberg, A. S., (2002). In vitro and in vivo degradation of phytate. In:Reddy, N.R., Sathe, S.K. (Eds.), Food Phytates. CRC Press LLC, Boca Raton, FL, pp. 139-155.
[29] Reale, A., Konietzny, U., Coppol, R, Sorrentino, E., Greiner, R., (2007). The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J. Agr. Food Chem., 55, 2993-2997.