Extraction of Active Components from Saffron Petal with the Help of Ultrasound and Optimization of Extraction Conditions

Document Type : Research Article


1 PhD. Student, Department of Food Processing, Research Institute of Food Science and Technology, Mashhad

2 Assistant Professor, Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad


Saffron is one of the plants which has traditionally been used in food industry as well as in folk medicine. Saffron petal as a byproduct of saffron processing is containing a considerable amount of antioxidant compounds. However, there is little information about extraction of these compounds from this plant in many ways. Ultrasound-assisted extraction is a fast and efficient method for extraction of active compounds from plant sources which is applicable in both laboratory and industrial scales. In this study, Box-Behnken design was used in order to investigate the effect of temperature (25-65º C), time (5-15 min) and amplitude percentage (20–100 %) on the yield of polyphenol, flavonoid and anthocyanin, and also the antioxidant activity and optimization of extraction process. Results showed that maximum yield of antioxidant compounds is achieved with extraction temperature of 43º C, extraction time of 15 min and amplitude percentage of 100%. Under these conditions, the values were 1380 (mg gallic acid/100 g) for polyphenol, 144 (mg quercetin/100 g) for flavonoid, 120 (mg/100 g) for anthocyanin, 73% for DPPH free radical scavenging activity and 3.8 (mM) for ferric ion reducing antioxidant power.


Main Subjects

[1]        Kaur, G., Jabbar, Z., Athar, M., Alam, M.S. (2006). Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food Chem. Toxicol.,  44(7), 984-993.
[2]        Rodrigues, S., Pinto, G.A., Fernandes, F.A. (2008). Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrason. Sonochem.,  15(1), 95-100.
[3]        Weisburger, J. (1999). Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food Chem. Toxicol.,  37(9), 943-948.
[4]        Esmaeili, N., Ebrahimzadeh, H., Abdi, K., Safarian, S. (2011). Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study. Pharmacognosy magazine,  7(25), 74-80.
[5]        Kazuma, K., Noda, N., Suzuki, M. (2003). Flavonoid composition related to petal color in different lines of Clitoria ternatea. Phytochemistry,  64(6), 1133-1139.
[6]        Hosseinzadeh, H.,Younesi, H.M. (2002). Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol.,  2(1), 1-8.
[7]        Basti, A.A., Moshiri, E., Noorbala, A.A., Jamshidi, A.H., Abbasi, S.H., Akhondzadeh, S. (2007). Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: a pilot double-blind randomized trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry,  31(2), 439-442.
[8]        Fatehi, M., Rashidabady, T., Fatehi-Hassanabad, Z. (2003). Effects of Crocus sativus petals’ extract on rat blood pressure and on responses induced by electrical field stimulation in the rat isolated vas deferens and guinea-pig ileum. J. Ethnopharmacol.,  84(2), 199-203.
[9]        Nijveldt, R.J., Van Nood, E., Van Hoorn, D.E., Boelens, P.G., Van Norren, K., Van Leeuwen, P.A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am. J clin. nutr.,  74(4), 418-425.
[10]      Catoni, C., Schaefer, H.M., Peters, A. (2008). Fruit for health: the effect of flavonoids on humoral immune response and food selection in a frugivorous bird. Funct. Ecol.,  22(4), 649-654.
[11]      Termentzi, A., Kokkalou, E. (2008). LC-DAD-MS (ESI+) analysis and antioxidant capacity of crocus sativus petal extracts. Planta Med.,  74(5), 573-581.
[12]      Sánchez-Vioque, R., Rodríguez-Conde, M., Reina-Ureña, J., Escolano-Tercero, M., Herraiz-Peñalver, D., Santana-Méridas, O. (2012). In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Ind. Crops Prod.,  39, 149-153.
[13]      Ulbricht, C., Conquer, J., Costa, D., Hollands, W., Iannuzzi, C., Isaac, R., Jordan, J.K., Ledesma, N., Ostroff, C., Serrano, J.M.G. (2011). An evidence-based systematic review of saffron (Crocus sativus) by the natural standard research collaboration. J Diet Suppl,  8(1), 58-114.
[14]      Zheng, C.J., Li, L., Ma, W.H., Han, T., Qin, L.P. (2011). Chemical constituents and bioactivities of the liposoluble fraction from different medicinal parts of Crocus sativus. Pharm. Biol.,  49(7), 756-763.
[15]      Chan, S., Lee, C., Yap, C., Mustapha, W.A.W., Ho, C. (2009). Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. Int Food Res J.,  16(2), 203-213.
[16]      Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem.,  8(3), 303-313.
[17]      Mc Donald, S., Prenzler, P.D., Antolovich, M., Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chem.,  73(1), 73-84.
[18]      Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem.,  64(4), 555-559.
[19]      Lee, J., Durst, R.W., Wrolstad, R.E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int.,  88(5), 1269-1278.
[20]      von Gadow, A., Joubert, E., Hansmann, C.F. (1997). Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. J. Agric. Food. Chem.,  45(3), 632-638.
[21]      Benzie, I.F., Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem.,  239(1), 70-76.
[22]      D’Alessandro, L.G., Kriaa, K., Nikov, I., Dimitrov, K. (2012). Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol.,  93, 42-47.
[23]      Ahmadian-Kouchaksaraie, Z., Niazmand, R., Najafi, M.N. (2016). Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. Innovative Food Sci. Emerging Technol.,  36, 234-244.
[24]      Prasad, K.N., Yang, E., Yi, C., Zhao, M., Jiang, Y. (2009). Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innovative Food Sci. Emerging Technol.,  10(2), 155-159.
[25]      Silva, E., Rogez, H., Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol.,  55(3), 381-387.
[26]      Wissam, Z., Ghada, B., Wassim, A., Warid, K. (2012). Effective extraction of polyphenols and proanthocyanidins from pomegranate’s peel. Int. J. Pharm. Pharm. Sci.,  4(3), 675-682.
[27]      Ghafoor, K., Choi, Y.H., Jeon, J.Y., Jo, I.H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food. Chem.,  57(11),4988-4994.
[28]      Da Porto, C., Porretto, E., Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem.,  20(4), 1076-1080.
[29]      کمالی، ف.؛ صادقی ماهونک، ع.؛ نصیری فر، ز. (1394) تاثیر شرایط عصاره گیری به کمک فراصوت بر میزان استخراج ترکیبات فنولی و فلاونوئیدی از میوه سنجد زینتی. علوم غذایی و تغذیه، 2(2): 23-32.
[30]      Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem.,  106(2), 804-810.
[31]      Xu, Y.Pan, S. (2013). Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrason. Sonochem.,  20(4), 1026-1032.
[32]      Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J., Mason, T. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason. Sonochem.,  11(3), 261-265.
[33]      Da Costa, E.M., Barbosa Filho, J.M., do Nascimento, T.G., Macêdo, R.O. (2002). Thermal characterization of the quercetin and rutin flavonoids. Thermochim. Acta,  392, 79-84.
[34]      Cheok, C., Chin, N., Yusof, Y., Talib, R., Law, C. (2013). Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Ind. Crops Prod.,  50, 1-7.
[35]      Golmohamadi, A., Möller, G., Powers, J., Nindo, C. (2013). Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason. Sonochem.,  20(5), 1316-1323.
[36]      Nayak, C.A., Rastogi, N.K. (2013). Optimization of solid–liquid extraction of phytochemicals from Garcinia indica Choisy by response surface methodology. Food Res. Int.,  50(2), 550-556.
[37]      Giusti, M.M., Wrolstad, R.E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J.,  14(3), 217-225.
[38]      نصیری فر، ز.؛ صادقی ماهونک، ع.؛ کمالی، ف. (1392) تاثیر شرایط عصاره گیری به کمک فراصوت بر میزان استخراج ترکیبات فنولی و فلاونوئیدی از میوه داغداغان. فراوری و نگه‌داری مواد غذایی، 5(2): 115-130.