Comparison of drying parameters and qualitative characteristics of paddy (Tarom Hashemi) using a continues and a domestic microwave dryer

Document Type : Research Article

Authors

1 Assistance Professor, Department of Bio-systems Engineering, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran

2 MSc. Student, Department of Bio-system Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

Paddy drying is one of the most important and critical post-harvest processes of rice in order to prevent the growth of germs and fungi; which enhances the product storage time. In this study, drying process of Tarom Hashemi was evaluated in a continuous band microwave dryer and in a domestic microwave dryer. The obtained results indicated that the moisture ratio decreased by increasing the paddy thickness from 6 to 18 mm and the microwave power levels from 10 to 30%, whereas the seed breakage increased. The drying ratio in the domestic microwave dryer was always less than that in the continuous band microwave dryer except at the 10% input power level, whereas the seed breakage percent was always more in the domestic microwave dryer in comparison with the continuous band microwave dryer. The results indicated that the moisture diffusion coefficient was larger in drying with continuous band microwave dryer in comparison with the domestic microwave dryer at 10% microwave power levels, whereas this coefficient was less at the 50% microwave power. As a final conclusion, the use of household microwave dryer for drying the paddy is not recommended due to high percentage of seed breakage. In contrast using a continuous band microwave dryer with low input power levels (e.g., 10%) is recommended on a large scale due to the rapid moisture reduction and low seed breakage percentage.

Keywords

Main Subjects


[1]     Dadali, G., Demirhan, E., Özbek, B. (2007). Effect of drying conditions on rehydration kinetics of microwave dried spinach. Food Bioprod. Process., 86, 235-241.
[2]     Discala, K., Meschino, G., Vega-Galvez, A., Lemus-Mondaca, R., Roura, S., and Mascheroni, R. (2013). An artificial neural network model for prediction of quality characteristics of apples during convective dehydration. Food Sci. Technol., 33(3), 411-416.
[3]     Doymaz, I., Kocayigit, F. (2011). Drying and Rehydration Behaviors of Convection Drying of Green Peas. Dry. Technol., 29(11), 1273- 1282.
[4]     Goksu, E.I., Sumnu, G., Esin, A. (2005). Effect of microwave on fluidized bed drying of macaroni beads. J. Food Eng., 66, 463–468.
[5]     Cheenkachorn, K. (2007). Drying of rice paddy using a microwave-vacuum dryer, Proc. European Cong. Chem. Eng. (ECCE-6), Copenhagen. 16-20.
[6]     Soysal, Y. (2004). Microwave Drying Characteristics of Parsley. Biosys. Eng., 89 (2), 167–173.
[7]     Cihan, A., Kahveci, K., Hacihafizoghlu, O. (2007). Modeling of intermittent drying of thin layer rough rice. J. Food Eng., 79, 293-298.
[8]     Kouchakzadeh, A., Shafeei, S. (2010). Modeling of microwave–convective drying of pistachios. Energy Conv. Man., 51, 2012–2015.
[9]     Maskan, M. (2000). Microwave air and microwave finish drying of banana. J.Food Eng., 44, 71-78.
[10] Monteiro, R.L., Carciofi, B.A.M., Marsaioli Jr, A., Laurindo, J.B. (2015). How to make a microwave vacuum dryer with turntable. J. Food Eng., 166, 276–284.
[11] Mullin, J. (1995). Microwave processing. In New Methods of Food Preservation. Edited by G.W.Gould. Cornwall, UK: Blackie Acad & Professional., 112-134.
[12] Oghbaei, M., Mirzaee, O. (2010). Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys and Comp., 494, 175–189.
[13] Shitanda, D., Y. Nishiyama., S. Koide. (2002). Compressive strength properties of rough rice considering variation of contact area. J. Food Eng., 53, 53-58.
[14] Hemis, M., Choudhary, R., Watson, D. G. (2012). A coupled mathematical model for simultaneous microwave and convective drying of wheat seeds. Biosys Eng., 112, 202 -209.
[15] Alibas, I. (2014). Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. J. F Sci. and Technol., 34 (2), 394-401.
[16] Darvishi, H., Khoshtaghaza, M. H., Najafi, G., Zarein, M. (2013). Characteristics of sunflower seed drying and microwave energy consumption. Int. Agrophys., 27, 127-132. 
[17] Karaaslan, S. N., Tuncer, I. K. (2008). Development of a drying model for combined microwave–fan-assisted convection drying of spinach. Biosys Eng., 100, 44–52.
[18] Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., Khoshtaghaza, M.H. (2014). Comparison of energy parameters in various dryers. Energy Conv. Man., 87, 711–725.
[19] Boyo, H. O., Boyo, A. O., Osibona, A., Ishola, F. (2013). An Automated Combined Microwave and Electric-Element Fish Dryer. Int J. Comp. Eng. Res., 3(6), 38-41.
[20] Kassem, A.S., Shokr, A.Z., El-Mahdy, A.R., Aboukarima, A.M., Hamed, E.Y. (2011). Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. J. Saudi Soc. Agr. Sci., 10, 33–40.
[21] Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J. Food Eng., 48, 177-182.
[22] Yongsawatdikul, J., Gunasekaran, S. (1996). Microwave-vacuum drying of cranberries: Part I. Energy use and efficiency. J. Food Proc. Pres., 20, 121-143.
[23] Hazer Vazifeh, A., Nikbakht, A.M., Ahmadi Moghadam, P., Foj Lali, V. (2012). Design, fabrication and evaluation of a combined microwave-hot air. 7th Nat.Conf. Agri. Machin. Eng., Shiraz. Iran. (In Farsi)., (251), 1-6.
[24] Gholikhani, A., Rafie, Sh., Aghili Nategh, N., Aghbashlo, M., Hoseinpor, S. (2015). A review of advantages and disadvantages of combined microwave and hot air dryer. 8th Nat. Conf. Agri. Machin. Eng., Tehran. Iran. (In Farsi)., (409), 1-10.
[25] Sangdao, Ch., Songsermpong, S., Krairiksh, M. (2011). A Continuous Fluidized Bed Microwave Paddy Drying System Using Applicators with Perpendicular Slots on a Concentric Cylindrical Chamber. Dry. Technol., 29(1), 35-46.
[26] Jindarat, W., Rattanadecho, P., Vongpradubchai, S., Pianroj, Y. (2011). Analysis of Energy Consumption in Drying Process of Non-Hygroscopic Porous Packed Bed Using a Combined Multi-Feed Microwave-Convective Air and Continuous Belt System (CMCB). Dry. Technol., 29 (8), 926-938.
[27] ASAE Standards. (1999). D245.5. Moisture relationship of plant based agricultural products (46th Ed.). St. Joseph, Mich.: ASAE.
[28] ASAE. (1998). Standards S448 Dec93, Thin-layer drying of grain and crops St Joseph. MI.
[29]جعفری، ح. (1394) طراحی و ساخت سامانه آزمایشگاهی خشک‌کن میکروویو شالی و امکان سنجی انضمام آن به کمباین غلات. پایان نامه کارشناسی ارشد. دانشگاه علوم کشاورزی و منابع طبیعی ساری.
[30] Manikantun, M.R., Barnwalr, P., Goyal, R.K. (2012). Modeling the drying kinetics of paddy in an integrated paddy dryer. I.K. Int. Pub. House Ltd. New Delhi, Bangalore. 103-110.
[31]اشتواد، ر. (1390) بررسی تجربی و تحلیلی خصوصیات بیوفیزیکی و حرارتی برنج‌های ارقام اصلاح شده جدید. پایان نامه کارشناسی ارشد. دانشگاه علوم کشاورزی و منابع طبیعی ساری.
[32] Minaei, S., Motevali, A., Ghobadian, B., Banakar, A., Samadi S.H. (2014). An Investigation of Energy Consumption, Solar Fraction and Hybrid Photovoltaic–Thermal Solar Dryer Parameters in Drying of Chamomile Flower. Int. J. Food Eng., 10(4), 697–711.
[33] Zecchi, B., Gerla, P. (2007). Breakage and mass transfer models during drying of rough rice. Drying Technol., 25(9), 1405-1410.
[34] Kalantari, D., Eshtevad, R. (2013). Influence of different of tempering period and vacuum conditions on the rice grain breakage in thin layer dryer. Cer. Agron. Mold., 47(4), 5-12.
[35] Chukwu, O., Akande, F.B. (2007). Development of an apparatus for measuring angle of repose of granular materials. AU J.T., 11(1), 62-66.