The effect of co-crystallization process on the physicochemical and functional properties of sucrose powder containing olive leaf extract

Document Type : Research Article


1 MSc Student, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Ph. D. Student, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran


In the present study, the effect of co-crystallization process and different concentrations of extract on physicochemical and functional properties of sucrose powders containing olive leaf extract was evaluated. Entrapment yield, loading capacity, antioxidant activity, characteristics of co-crystallized product such as moisture, water activity, bulk and tapped density, solubility and hygroscopicity, as well as flowability properties of powder (carr index, hausner ratio and angle of repose) were characterized. The results showed that the highest loading capacity (about 1.178 mg gallic acid /g powder) obtained from co-crystallized products containing 10% olive leaf extract. In addition, in this process, entrapment yield of phenolic compounds of olive leaf extract was about 89%. Olive leaf extract antioxidant property towards DPPH· radical was maintained during co-crystallization process. The difference in particle size of co-crystallized product was significantly (p˂0.05) influenced its flow properties. In general, the values of water activity, moisture content, hygroscopicity and flow properties of co-crystallized product showed the effectiveness of this method to produce powders with physicochemical, flowability and high stability characteristics.


Main Subjects

[1] Chen, A.C. (1994). Ingredient technology by the sugar cocrystallization process. INT Sugar J. 96, 493-494.
[2] Bhandari, B.R., Datta, N., D'Arcy, B.R., Rintoul, G.B. (1998). Co-crystallization of honey with sucrose. Food Sci Technol-LEB, 31 (2), 138-142.
[3] Chen, A.C., Veiga, M.F., Rizzuto, A.B. (1988). Cocrystallization: An encapsulation process. Food Technol, 42(11), 87.
[4] López-Córdoba, A., Deladino, L., Agudelo-Mesa, L., Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. J Food Eng124, 158-165.
[5] Awad, A., Chen, A.C. (1993). A new generation of sucrose products made by cocrystallization, Food Technol, 47(1), 145-146.
[6] LaBell, F. (1991). Co-crystallization process aids dispersion and solubility. Food Processing52 (8), 60-63.
[7] Astolfi-Filho, Z., Souza, A.C., Reipert, É.C., Telis, V.R. (2005). Encapsulação de suco de maracujá por co-cristalização com sacarose: cinética de cristalização e propriedades físicas. Food Sci Technol-LEB, 25 (4), 795-801.
[8] Beristain, C.I., Vazquez, A., Garcia, H.S., Vernon-Carter, E.J. (1996). Encapsulation of orange peel oil by co-crystallization. Food Sci Technol-LEB29 (7), 645-647.
[9] Bhandari, B.R., Hartel, R.W. (2002). Co‐crystallization of Sucrose at High Concentration in the Presence of Glucose and Fructose. J Food Sci67(5), 1797-1802.
[10] Deladino, L., Anbinder, P.S., Navarro, A.S., Martino, M.N. (2007). Co-crystallization of yerba mate extract (Ilex paraguariensis) and mineral salts within a sucrose matrix. J Food Eng80 (2), 573-580.
[11] Deladino, L., Navarro, A.S., Martino, M.N. (2010). Microstructure of minerals and yerba mate extract co-crystallized with sucroseJ Food Eng96 (3), 410-415.
[12] López-Córdoba, A., Gallo, L., Bucalá, V., Martino, M., Navarro, A. (2016). Co-crystallization of zinc sulfate with sucrose: A promissory strategy to render zinc solid dosage forms more palatable. J Food Eng, 170, 100-107.
[13] Maulny, A.P.E., Beckett, S.T., Mackenzie, G. (2005). Physical Properties of Co‐crystalline Sugar and Honey. J Food Sci70 (9), 567-572.
[14] Sardar, B.R., Singhal, R.S. (2013). Characterization of co-crystallized sucrose entrapped with cardamom oleoresin. J Food Eng, 117 (4), 521-529.
[15] Boskou, D., Blekas, G., Tsimidou, M. (1996). Olive oil composition. Olive oil: Rubber Chem Technol 19, 52-83.        
[16] Goulas, V., Exarchou, V., Troganis, A.N., Psomiadou, E., Fotsis, T., Briasoulis, E., Gerothanassis, I.P. (2009). Phytochemicals in olive‐leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol Nutr Food Res53 (5), 600-608.
[17] Bulotta, S., Celano, M., Lepore, S.M., Montalcini, T., Pujia, A., Russo, D. (2014). Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J Transl. Med12 (1), 1-22.
[18] Casaburi, I., Puoci, F., Chimento, A., Sirianni, R., Ruggiero, C., Avena, P., Pezzi, V. (2013). Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: a review of in vitro studies. Mol Nutr Food Res57 (1), 71-83.
[19] Rafiee, Z., Jafari, S.M., Alami, M., Khomeiri, M. (2011). Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. J Anim Plant Sci, 21 (4), 738-745.
[20] Rahmanian, N., Jafari, S.M., Galanakis, C.M. (2014). Recovery and removal of phenolic compounds from olive mill wastewater. J Am Oil Chem Soc91(1), 1-18.
[21] Kosaraju, S.L., Labbett, D., Emin, M., Konczak, I.,  Lundin, L. (2008). Delivering polyphenols for healthy ageing. Nutr Diet65 (3), 48-52.
[22] Makris, D.P., Rossiter, J.T. (2000). Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (quercetin 3-O-rhamnosylglucoside) in aqueous model systems. J Agric Food Chem48 (9), 3830-3838.
[23] Wanasundara, P.K J P.D., Shahidi, F. (2005). Antioxidants: science, technology, and applications. Bailey's Industrial Oil and Fat Products. John Wiley & Sons, Inc. 431-489.
[24] Anagnostopoulou, M.A., Kefalas, P., Papageorgiou, V.P., Assimopoulou, A.N., Boskou, D. (2006). Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem94 (1), 19-25.
[25] AOAC. (2005). Official methods of analysis of the association of official analytical chemists, Vol. II. Arlington, VA: Association of Official Analytical Chemists.
[26] Callahan, J.C., Cleary, G.W., Elefant, M., Kaplan, G., Kensler, T., Nash, R.A. (1982). Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm, 8, 355–369.
[27] Goula, A.M., Adamopoulos, K.G. (2005). Spray drying of tomato pulp in dehumidified air: I. The effect on product recovery. J Food Eng66 (1), 25-34.
[28] Pordesimo, L.O., Onwulata, C.I., Carvalho, C.W.P. (2009). Food powder delivery through a feeder system: effect of physicochemical properties. Int J Food Prop12 (3), 556-570.
[29] Jinapong, N., Suphantharika, M., Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J Food Eng, 84 (2), 194-205.
[30] Carr, R.L. (1965). Evaluating flow properties of solids. Chem Eng, 1965 , 72 (2),
[31] Capannesi, C., Palchetti, I., Mascini, M., Parenti, A. (2000). Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem71 (4), 553-562.
[32] Brand-Williams, W., Cuvelier, M. E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci Technol-LEB28 (1), 25-30.
[33] Zheng, C., Sun, D.W., Zheng, L. (2006). Recent developments and applications of image features for food quality evaluation and inspection–a review. Trends Food Sci Tech, 17(12), 642-655.
[34] Beristain, C.I., Mendoza, R.E., Garcia, H.S., Vazquez, A. (1994). Cocrystallization of jamaica (HibiscussabdarifaL.) granules. Food Sci Technol-LEB27(4), 347-349.
[35] Zheng, L., Ding, Z., Zhang, M., Sun, J., (2011). Microencapsulation of bayberry polyphenols by ethyl cellulose: Preparation and characterization. J  Food Eng104(1), 89-95.
[36] Fennema, O.R., Tannenbaum, S.R. (1996). Introduction to food chemistry. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 1-16.
[37] Fu, B., Labuza, T.P. (1993). Shelf-life prediction: theory and application. Food Control4 (3), 125-133.
[38] Quek, S.Y., Chok, N.K., Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chem Eng Process46 (5), 386-392.
[39] Newman, A.W., Reutzel‐Edens, S.M., Zografi, G. (2008). Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J Pharm Sci, 97 (3), 1047-1059.
[40] Schultheiss, N., Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des9(6), 2950-2967.
[41] Abdullah, E.C., Geldart, D. (1999). The use of bulk density measurements as flowability indicators. Powder Technol102 (2), 151-165.
[42] Geldart, D., Abdullah, E.C., Hassanpour, A., Nwoke, L.C., Wouters, I. (2006). Characterization of powder flowability using measurement of angle of repose. China Particuology4, 104-107.
[43] Santomaso, A., Lazzaro, P., Canu, P. (2003). Powder flowability and density ratios: the impact of granules packing. Chem Eng  Sci58 (13), 2857-2874.
[44] Barbosa-Canovas, G.V., Malave-Lopez, J., Peleg, M. (1987). Density and compressibility of selected food powders mixture.  ‎J Food Process Eng10 (1), 1-19.
[45] Peleg, M. (1977). Flowability of food powders and mthods for its evaluation—a review. J Food Process Eng1 (4), 303-328.
[46] Teunou, E., Vasseur, J., Krawczyk, M. (1995). Measurement and interpretation of bulk solids angle of repose for industrial process design.  Powder Handl Process7 (3), 219-228.
[47] Juliano, P., Barbosa-Cánovas, G.V. (2010). Food powders flowability characterization: theory, methods, and applications. Annu Rev Food Sci Technol1, 211-239.
[48] Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J.C., Cloots, R., Vandewalle, N. (2012). Measuring the flowing properties of powders and grains. Powder Technol224, 19-27.
[49] USP 30-NF 25, United States Pharmacopeia-National Formulary, Rockville, MD, 2007.
[50] Ersus, S., Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng, 80, 805-812.
[51] Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B., Wrolstad, R.E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem, 50 (3), 519-525.
[52] Muzaffar, K., Wani, S.A., Dinkarrao, B.V., Kumar, P. (2016). Determination of production efficiency, color, glass transition, and sticky point temperature of spray-dried pomegranate juice powder. Cogent Food Agric2 (1), 114-120.
[53] Tuyen, C.K., Nguyen, M.H.,  Roach, P.D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J Food Eng, 98 (3), 385-392.